Skip to main content
Log in

Morphofunctional Features of Two Types of Phagocytes in the Holothurian Еupentacta fraudatrix (Djakonov et Baranova, 1958)

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Phagocytes of the Far Eastern holothurian Eupentacta fraudatrix are separated by gradient centrifugation into two fractions (P1 and P2 phagocytes) having different functional markers. The aim of the work was to identify morphological features of P1 and P2 phagocytes, their basic oxidant/antioxidant status and phenotype. Various methods, including light and fluorescence microscopy, cytometric analysis, and flow imaging microscopy, revealed morphological differences between the two types of E. fraudatrix phagocytes. Phagocytes differ in their dimensional characteristics, granularity, nuclear/cytoplasmic ratio, and cell circularity parameters. The obtained data support both the idea that P1 and P2 phagocytes represent different levels of differentiation and our previous findings on the different role of these cells in the immune response. Differential patterns of seasonal changes in the number of these cells also argue in favor of the concept of different functional roles of the two types of phagocytes. The largest changes in the number of P1 phagocytes were observed during the period of temperature-dependent metabolic alterations in E. fraudatrix, while those in P2 phagocytes occurred during the periods corresponding to tissue rearrangements. The study of the basic parameters of functional activity revealed no significant differences in levels of reactive oxygen species in both P1 and P2 phagocytes, while there was a tendency toward a higher level of reduced glutathione in P1 compared to P2 phagocytes, suggesting ​​a higher antioxidant activity in the former. Dexamethasone had a multidirectional effect on the level of binding of plant lectins derived from Canavalia ensiformis (con A) and Glycin max (SBA) by to surface receptors in two types of phagocytes, further supporting the assumption of different differentiation/activity levels and functional roles of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Toral-Granda V, Lovatelli A, Vasconcellos M (eds) (2008) Sea cucumbers. A global review of fisheries and trade. FAO fisheries and aquaculture technical paper No. 516 FAO, Rome. http://www.fao.org/docrep/011/i0375e/i0375e00.htm

    Google Scholar 

  2. Dong Y, Sun H, Zhou Z, Yang A, Chen Z, Guan X, Gao S, Wang B, Jiang J (2014) Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge. Int J Mol Sci 15: 19472–19486. https://doi.org/10.3390/ijms151119472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He L-S, Zhang P-W, Huang J-M, Zhu F-C, Danchin A, Wang Y (2018) The enigmatic genome of an obligate ancient Spiroplasma symbiont in a Hadal holothurian. Appl Environ Microbiol 84: e01965-17. https://doi.org/10.1128/AEM.01965-17

    Article  PubMed  Google Scholar 

  4. Li Q, Qi R, Wang Y, Ye S, Qiao G, Li H (2013) Comparison of cells free in coelomic and water-vascular system of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol 35: 1654–1657. https://doi.org/10.1016/j.fsi.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  5. Chia F-S, Xing J (1996) Echinoderm coelomocytes. Zool Stud 35: 231–254.

    Google Scholar 

  6. Eliseikina MG, Magarlamov TY (2002) Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota, Stichopodidae) and Cucumaria japonica (Dendrochirota, Cucumariidae). Russ J Mar Biol 28: 197–202. https://doi.org/10.1023/A:1016801521216

    Article  Google Scholar 

  7. Dolmatova LS, Eliseikina MG, Romashina VV (2004) Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix. J Evol Biochem Physiol 40: 126–135.

    Article  CAS  Google Scholar 

  8. Ramírez-Gómez F, Aponte-Rivera F, Méndez-Castaner L, García-Arrarás JE (2010) Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns. Fish Shellfish Immunol 29: 175–185. https://doi.org/10.1016/j.fsi.2010.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edds KT (1977) Dynamic aspects of filopodial formation by reorganization of microfilaments. J Cell Biol 73: 479–491. https://doi.org/10.1083/jcb.73.2.479

    Article  CAS  PubMed  Google Scholar 

  10. Liao W-Y, Fugmann SD (2017) Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus. PLoS ONE 12: e0187987. https://doi.org/10.1371/journal.pone.0187987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolmatova LS, Dolmatov IY (2020) Different macrophage type triggering as target of the action of biologically active substances from marine invertebrates. Mar Drugs 18: 37. https://doi.org/10.3390/md18010037

    Article  CAS  PubMed Central  Google Scholar 

  12. Dolmatova LS., Ulanova OA, Timchenko NF (2019) Yersinia pseudotuberculosis thermostable toxin dysregulates the functional activity of two types of phagocytes in the holothurian Eupentacta fraudatrix. Biol Bull Russ Acad Sci 46: 117–127. https://doi.org/10.1134/S1062359019020043

    Article  Google Scholar 

  13. Prompoon Y, Weerachatyanukul W, Withyachumnarnkul B, Vanichviriyakit R, Wongprasert K, Asuvapongpatana S (2015) Lectin-based profiling of coelomocytes in Holothuria scabra and expression of superoxide dismutase in purified coelomocytes. Zoolog Sci 32: 345–351. https://doi.org/10.2108/zs140285

    Article  CAS  PubMed  Google Scholar 

  14. Dolmatova LS, Ulanova OA, Timchenko NF (2021) Effect of a heat-stable toxin of Yersinia pseudotuberculosis on the functional and phenotypic traits of two types of phagocytes in the holothurian Eupentacta fraudatrix. Biol Bull Russ Acad Sci 48(4): 395–406. https://doi.org/10.1134/S1062359021040051

    Article  CAS  Google Scholar 

  15. Dolmatova LS, Zaika OA (2007) Apoptosis-modulating effect of prostaglandin E2 in coelomocytes of holothurian Eupentacta fraudatrix depends on the cell antioxidant enzyme status. Biol Bull Russ Acad Sci 34: 221–229. https://doi.org/10.1134/S1062359007030028

    Article  CAS  Google Scholar 

  16. Odintsova NA (2001) Bases of cultivation of marine invertebrate cells. Dalnauka, Vladivostok. (In Russ).

    Google Scholar 

  17. Dolmatova LS, Eliseykina MG, Timchenko NF, Kovaleva AL, Shitkova OA (2003) Generation of reactive oxygen species in the different fractions of the coelomocytes of holothurian Eupentacta fraudatrix in response to the thermostable toxin of Yersinia pseudotuberculosis in vitro. Chinese J Oceanol Limnol 21: 293–304. https://doi.org/ 10.1007/BF02860423

    Article  CAS  Google Scholar 

  18. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594: 57–72. https://doi.org/10.1007/978-1-60761-411-1_4

    Article  CAS  PubMed  Google Scholar 

  19. Fraternale A, Crinelli R, Casabianca A, Paoletti M, Orlandi Ch, Carloni E, Smietana M, Palamara A (2013) Molecules altering the intracellular thiol content modulate NF-kB and STAT-1/IRF-1 signalling pathways and IL-12 p40 and IL-27 p28 production in murine macrophages. PLoS ONE 8(3): e57866. https://doi.org/10.1371/journal.pone.0057866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKenzie ANJ, Preston TM (1992) Functional studies on Calliphora vomitoria haemocyte subpopulations defined by lectin staining and density centrifugation. Devel Compar Immunol 16: 19–30. https://doi.org/10.1016/0145-305x(92)90048-h

    Article  CAS  Google Scholar 

  21. Gnedkova IA, Lisyanyi NI, Stanetskaya DN, Rozumenko VD, Glavatskii AYa, Shmeleva AA, Malysheva TA, Chernenko OG, Gnedkova MA (2015) Lectinbinding and tumorigenic properties of C6 glioma cells. Onkologiya 17: 4–11. (In Russ).

    Google Scholar 

  22. Andrade C, Oliveira B, Guatelli S, Martinez P, Simões B, Bispo C, Ferrario C, Bonasoro F, Rino J, Sugni M, Gardner R, Zilhão R, Coelho AV (2021) Characterization of coelomic fluid cell types in the star fish Marthasterias glacialis using a flow cytometry/imaging combined approach. Front Immunol 12: 641–664. https://doi.org/10.3389/fimmu

    Article  Google Scholar 

  23. Xing K, Yang HS, Chen MY (2008) Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquat Biol 2: 85–92. https://doi.org/10.3354/ab00038

    Article  Google Scholar 

  24. Endean R (1966) The coelomocytes and coelomic fluids. In: Physiology of Echinodermata. Intersciences, New York, pp 301–328.

    Google Scholar 

  25. Henson JH, Nesbitt D, Wright BD, Scholey JM (1992) Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 103: 309–320. https://doi.org/10.1242/jcs.103.2.309

    Article  CAS  PubMed  Google Scholar 

  26. Zavalnaya EG, Shamshurina EV, Eliseikina MG (2020) The immunocytochemical identification of PIWI-positive cells during the recovery of a coelomocyte population after evisceration in the holothurian Eupentacta fraudatrix (Djakonov et Baranova, 1958) (Holothuroidea: Dendrochirota). Russ J Mar Biol 46: 97–104. https://doi.org/10.31857/S0134347520020114

    Article  CAS  Google Scholar 

  27. Canicattì C, D’Ancona G, Farina-Lipari E (1989) The coelomocytes of Holothuria polii (Echinodermata). I. Light and electron microscopy. Italian J Zool 56: 29–36. https://doi.org/10.1080/11250008909355618

    Article  Google Scholar 

  28. DaMatta RA, Araujo-Jorge T, de Souza W (1995) Subpopulations of mouse resident peritoneal macrophages fractionated on percoll gradients show differences in cell size, lectin binding and antigen expression suggestive of different stages of maturation. Tissue and Cell 27: 505–513. https://doi.org/10.1016/S0040-8166(05)80059-X

    Article  CAS  PubMed  Google Scholar 

  29. Sediq AS, Klem R, Nejadnik MR, Meij P, Jiskoo W (2018) Label-free, flow-imaging methods for determination of cell concentration and viability. Pharm. Res 35: 150. https://doi.org/10.1007/s11095-018-2422-5

    Article  CAS  Google Scholar 

  30. Luu TU, Gott SC, Woo BWK, Rao MP, Liu WF (2015) Micro and nano-patterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces 7(51): 28665–28672. https://doi.org/10.1021/acsami.5b10589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oweson C, Li C, Söderhäll I, Hernroth B (2010) Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm Asterias rubens (L.). Aquat Toxicol 100: 84–90. https://doi.org/10.1016/j.aquatox.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  32. Dolmatova LS, Dolmatov IYu (2018) Lead induces different responses of two subpopulations of phagocytes in the holothurian Eupentacta fraudatrix. J Ocean Univ China 17: 1391–1403. https://doi.org/10.1007/s11802-018-3795-0

    Article  CAS  Google Scholar 

  33. Li C, Fang H, Xu D (2019) Effect of seasonal high temperature on the immune response in Apostichopus japonicus by transcriptome analysis. Fish Shellfish Immunol 92: 765–771. https://doi.org/10.1016/j.fsi.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  34. Brockton V, Henson JH, Raftos DA, Majeske AJ, Kim Y-O, Smith LC (2008) Localization and diversity of 185/333 proteins from the purple sea urchin—unexpected protein-size range and protein expression in a new coelomocyte type. J Cell Sci 121: 339–348. https://doi.org/10.1242/jcs.012096

    Article  CAS  PubMed  Google Scholar 

  35. Dolmatova LS, Slinko EN, Kolosova LF (2018) Accumulation of heavy metals in tissues of two color forms of the sea cucumber Eupentacta frudatrix in summer-autumn. Vestn Dal’nevost Otd Ross Akad Nauk 1: 71–78. (In Russ).

    Google Scholar 

  36. Marčeta T, Matozzo V, Alban S, Badocco D, Pastore P, Marin MG (2020) Do males and females respond differently to ocean acidification? An experimental study with the sea urchin Paracentrotus lividus. Environ Sci Pollut Res Int 27: 39516–39530. https://doi.org/10.1007/s11356-020-10040-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baranova ZI (1971) Echinoderms in Posyet Bay, Sea of Japan. Studies on the marine fauna 8(16): 242–264. (In Russ).

    Google Scholar 

  38. Zhang L, Pan Y, Song H (2015) Chapter 9. Environmental drivers of behavior. In: The sea cucumber Apostichopus japonicus. History, biology and aquaculture. Amsterdam: Academic Press 133–152. https://doi.org/10.1016/B978-0-12-799953-1.00009-X

    Chapter  Google Scholar 

  39. Lazaryuk AYu, Kilmatov TR, Marina EN, Kustova EV (2021) Seasonal features of the Novik Bay hydrological regime (Russky Island, Peter the Great Bay, Sea of Japan). Morskoy Gidrofizicheskiy Zhurnal 37: 680-695. https://doi.org/10.22449/0233-7584-2021-6-680-695

    Article  Google Scholar 

  40. Levin VS (1982) Far-Eastern trepang. Vladivostok: Far-East Publishers. (In Russ).

    Google Scholar 

  41. Menzel LP, Bigger CH (2015) Identification of unstimulated constitutive immunocytes, by enzyme histochemistry, in the coenenchyme of the octocoral Swiftia exserta. Biol Bull 229(2): 199–208. https://doi.org/10.1086/BBLv229n2p199

    Article  CAS  PubMed  Google Scholar 

  42. Thiel M, Zourelidis C, Peter K (1996) Die Rolle der polymorphkernigen neutrophilen Leukozyten in der Pathogenese des akuten Lungenversagens (ARDS). Anaesthesist 45: 113–130.

    Article  CAS  Google Scholar 

  43. Morris D, Guerra C, Khurasany M, Guilford F, Saviola B, Huang Y, Venketaraman V (2013) Glutathione supplementation improves macrophage functions in HIV. J Interfer Cytokine Res 33: 270–279. https://doi.org/10.1089/jir.2012.0103

    Article  CAS  Google Scholar 

  44. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci USA 95: 3071–3076. https://doi.org/10.1073/pnas.95.6.3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koren-Gluzer M, Rosenblat M, Hayek T (2015) Paraoxonase 2 induces a phenotypic switch in macrophage polarization favoring an M2 anti-inflammatory state. Int J Endocrinol 2015: 915243. https://doi.org/10.1155/2015/915243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mendoza-Coronel E, Ortega E (2017) Macrophage polarization modulates FcγR- and CD13-mediated phagocytosis and reactive oxygen species production, independently of receptor membrane. Front Immunol 8: 303. https://doi.org/10.3389/fimmu.2017.00303. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan H-Y, Wang N, Li S, Hong M, Wang X, Feng Y (2016) The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016: 2795090. https://doi.org/10.1155/2016/279509

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lewis CV, Vinh A, Diep H, Samuel CS, Drummond GR, Kemp-Harper BK (2019) Distinct redox signalling following macrophage activation influences profibrotic activity. J Immunol Res 2019: 1278301. https://doi.org/10.1155/2019/1278301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Novikov VE, Levchenkova OS, Pozhilova EV (2014) Role of reactive oxygen species in cell pathology and physiology and their pharmacological regulation. Reviews on Clinical Pharmacology and Drug Therapy 4: 13–21. https://doi.org/10.17816/RCF12413-21

    Article  Google Scholar 

  50. Muri J, Kopf M (2021) Redox regulation of immunometabolism. Nat Rev Immunol 21: 363–381. https://doi.org/10.1038/s41577-020-00478-8

    Article  CAS  PubMed  Google Scholar 

  51. Fortuny L, Sebastián C (2021) Sirtuins as metabolic regulators of immune cells phenotype and function. Genes 12: 1698. https://doi.org/10.3390/genes12111698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beri MM, Debray H, Dhainaut A, Porchet-Hennere E (1988) Distribution and nature of membrane receptors for different plant lectins in the coelomocyte subpopulations of the Annelida Nereis diversicolor. Dev Comp Immunol 12: 1–15. https://doi.org/10.1016/0145-305x(88)90020-1

    Article  Google Scholar 

  53. Seco-Rovira V, Beltran-Frutos E, Ferrer C, Sanchez-Huertas MM, Madrid JF, Saez FJ, Pastor LM (2013) Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Reprod Domest Anim 48: 974–983. https://doi.org/10.1111/rda.12196

    Article  CAS  PubMed  Google Scholar 

  54. Krugluger W, Gessl A, Boltz-Nitulescu G, Förster O (1990) Lectin binding of rat bone marrow cells during colony-stimulating factor type 1-induced differentiation: soybean agglutinin as a marker of mature rat macrophages. J Leukoc Biol 48: 541–548. https://doi.org/10.1002/jlb.48.6.541

    Article  CAS  PubMed  Google Scholar 

  55. Gengozian N, Reyes L, Pu R, Homer BL, Bova FJ, Yamamoto JK (1997) Fractionation of feline bone marrow with the soybean agglutinin lectin yields populations enriched for erythroid and myeloid elements: transplantation of soybean agglutinin-negative cells into lethally irradiated recipients. Transplantation 64: 510–518. https://doi.org/10.1097/00007890-199708150-00022

    Article  CAS  PubMed  Google Scholar 

  56. Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4(10): e7475. https://doi.org/10.1371/journal.pone.0007475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I, Schwartz-Albiez R, Reutter W, Pawlita M (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9: 557–569. https://doi.org/10.1093/glycob/9.6.557

    Article  CAS  PubMed  Google Scholar 

  58. Ehrchen JM, Roth J, Barczyk-Kahlert K (2019) More than suppression: glucocorticoid action on monocytes and macrophages. Front Immunol 10: 2028. https://doi.org/10.3389/fimmu.2019.02028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dolmatov IYu, Dolmatova LS, Shitkova OA, Kovaleva AL (2004) Dexamethasone-induced apoptosis in phagocytes of holothurian Eupentacta fraudatrix. In: Echinoderms. AA Balkema Publishers, Leiden. pp 105–119.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.A. Odintsova, D.Sci., and A.V. Brod, Ph.D. (A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok) for their help in analyzing the results of cytometric measurements, and S.P. Zakharkov, Ph.D. (V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok) for his assistance with imaging flow cytometry.

Funding

This work was implemented under the state assignment of the Ministry of Science and Higher Education of the Russian Federation (no. 121021500052-9).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental design, data collection and analysis, writing and editing the manuscript (L.S.D.); data collection and analysis, editing the manuscript (T.P.S.).

Corresponding author

Correspondence to L. S. Dolmatova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 4, pp. 269–283https://doi.org/10.31857/S0044452922040040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolmatova, L.S., Smolina, T.P. Morphofunctional Features of Two Types of Phagocytes in the Holothurian Еupentacta fraudatrix (Djakonov et Baranova, 1958). J Evol Biochem Phys 58, 955–970 (2022). https://doi.org/10.1134/S0022093022040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040020

Keywords:

Navigation