Skip to main content
Log in

An in vitro Study of the Effect of Bacterial Lipopolysaccharide on Transcription Levels of SLC Family Transporter Genes in Microglia

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are accompanied by neuroinflammation and excitotoxicity, in which microglia and astrocytes play an important role. However, there is still no clear understanding of how glial cells interact in the processes associated with inflammatory reactions in the brain. The study was aimed to elucidate the in vitro effect of bacterial lipopolysaccharide (LPS), as an inducer of inflammatory reactions, on transcription levels of the Slc superfamily transporter genes in microglia, depending on the astrocytic environment, as well as to reveal regional differences in these levels. The study was carried out on microglial cells in both monoculture and co-culture with astrocytes. Microglia and astrocytes were isolated from the cortex and hippocampus of 21-day-old Wistar rats. Microglial activation was induced by LPS. Transcription levels of the genes encoding Slc family transporters were analyzed by reverse transcription polymerase chain reaction (RT-PCR). LPS was shown to induce an increase in transcription levels of genes encoding the neuronal excitatory amino acid transporter 3 (Slc1a1, EAAT3), excitatory amino acid transporter 4 (Slc1a6, EAAT4), vesicular glutamate transporter 1 (Slc17a7, VGLUT1), and monocarboxylate transporter 1 (Slc16a1, MCT1a1) in microglial cells in vitro both in monoculture and in the presence of astrocytes. Transcription levels of the Slc family transporter genes significantly increased in all studied cultures compared to non-activated microglial cultures (control): in non-activated microglia-astrocyte co-cultures by 30.8–172.3%, in LPS-activated microglial monocultures by 33.5–63.3%, in LPS-activated microglia-astrocyte co-cultures by 17.8–76.0%. Moreover, regional differences were revealed in transcription levels of the above transporter genes in response to LPS administration. Thus, the data obtained confirm a change in the transcription profile of glutamate and monocarboxylate transporters upon LPS-induced activation of microglia, as well as the involvement of the astrocytic environment in these changes. Overall, it was shown that the exposure to a proinflammatory factor (LPS) activates the transcription of Slc family transporter genes in microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, Bassetti CL, Vos T, Feigin VL (2020) The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. The Lancet Public Health 5:e551–e567. https://doi.org/10.1016/S2468-2667(20)30190-0

    Article  PubMed  Google Scholar 

  2. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488. https://doi.org/10.3389/FNCEL.2018.00488/FULL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C, Corte L della, Dexter D (2009) Neuro-inflammation induced in the hippocampus of “binge drinking” rats may be mediated by elevated extracellular glutamate content. J Neurochem 111:1119–1128. https://doi.org/10.1111/J.1471-4159.2009.06389.X

    Article  CAS  PubMed  Google Scholar 

  4. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: The “collusion” hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammat 9:1–17. https://doi.org/10.1186/1742-2094-9-275/FIGURES/9

    Article  Google Scholar 

  5. O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 2017 3:1 3:1–14. https://doi.org/10.1038/s41537-017-0037-1

    Article  CAS  Google Scholar 

  6. Persson M, Rönnbäck L (2011) Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 2011 42:1 42:207–219. https://doi.org/10.1007/S00726-011-0865-7

    Article  Google Scholar 

  7. Rodríguez A, Ortega A (2017) Glutamine/Glutamate Transporters in Glial Cells: Much More Than Participants of a Metabolic Shuttle. Adv Neurobiol 16:169–183. https://doi.org/10.1007/978-3-319-55769-4_8

    Article  PubMed  Google Scholar 

  8. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 161:107559. https://doi.org/10.1016/J.NEUROPHARM.2019.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang J, Takeuchi H, Doi Y, Kawanokuchi J, Sonobe Y, Jin S, Yawata I, Li H, Yasuoka S, Mizuno T, Suzumura A (2008) Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity. Brain Res 1210:11–19. https://doi.org/10.1016/j.brainres.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  10. Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC (2021) Glutaminase in microglia: A novel regulator of neuroinflammation. Brain Behav Immun 92:139–156. https://doi.org/10.1016/J.BBI.2020.11.038

    Article  CAS  PubMed  Google Scholar 

  11. Mason S (2017) Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond. Front Neurosci 11:43. https://doi.org/10.3389/FNINS.2017.00043

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pérez-Escuredo J, van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863:2481. https://doi.org/10.1016/J.BBAMCR.2016.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  13. He JH, Yu L, Wang ZY, Wang Q, Cao JL, Gu LB (2019) Inhibition Of Monocarboxylate Transporter 1 In Spinal Cord Horn Significantly Reverses Chronic Inflammatory Pain. J Pain Res 12:2981. https://doi.org/10.2147/JPR.S219359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong L, Wang Z, Liang X, Wang Y, Gao L, Ma C (2019) Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflammation 16:240. https://doi.org/10.1186/S12974-019-1648-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moreira TJTP, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, Pellerin L (2009) Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab 29:1273–1283. https://doi.org/10.1038/JCBFM.2009.50

    Article  CAS  PubMed  Google Scholar 

  16. Cabinio M, Saresella M, Piancone F, LaRosa F, Marventano I, Guerini FR, Nemni R, Baglio F, Clerici M (2018) Association between Hippocampal Shape, Neuroinflammation, and Cognitive Decline in Alzheimer’s Disease. J Alzheimers Dis 66:1131–1144. https://doi.org/10.3233/JAD-180250

    Article  CAS  PubMed  Google Scholar 

  17. Harrison NA, Cercignani M, Voon V, Critchley HD (2015) Effects of Inflammation on Hippocampus and Substantia Nigra Responses to Novelty in Healthy Human Participants. Neuropsychopharmacology 40:831. https://doi.org/10.1038/NPP.2014.222

    Article  PubMed  Google Scholar 

  18. de Pablos RM, Villarán RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A (2006) Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex. J Neurosci 26:5709. https://doi.org/10.1523/JNEUROSCI.0802-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antunes MM, Godoy G, Masi LN, Curi R, Bazotte RB (2021) Prefrontal Cortex and Hippocampus Inflammation in Mice Fed High-Carbohydrate or High-Fat Diets. J Med Food https://home.liebertpub.com/jmf. https://doi.org/10.1089/JMF.2021.0026

  20. Grabert K, Michoel T, Karavolos MH, Clohisey S, Kenneth Baillie J, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to ageing. Nat Neurosci 19:504. https://doi.org/10.1038/NN.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mecha M (2011) An easy and fast way to obtain a high number of glial cells from rat cerebral tissue: A beginners approach. Protoc Exch. https://doi.org/10.1038/PROTEX.2011.218

  22. Collins HY, Bohlen CJ (2018) Isolation and culture of rodent microglia to promote a dynamic ramified morphology in serum-free medium. J Vis Exp 9 (133):57122. https://doi.org/10.3791/57122

    Article  CAS  Google Scholar 

  23. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA (2017) Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron 94:759-773. https://doi.org/10.1016/J.NEURON.2017.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA, Giger RJ, Stevens B (2016) New tools for studying microglia in the mouse and human CNS. Proc Nat Acad Sci USA 113:E1738–E1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taticchi A, Urbani S, Albi E, Servili M, Codini M, Traina G, Balloni S, Patria FF, Perioli L, Beccari T, Conte C (2019) In Vitro Anti-Inflammatory Effects of Phenolic Compounds from Moraiolo Virgin Olive Oil (MVOO) in Brain Cells via Regulating the TLR4/NLRP3 Axis. Molecules 10 (24):453. https://doi.org/10.3390/MOLECULES24244523

    Article  Google Scholar 

  26. Tarassishin L, Suh HS, Lee SC (2014) LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14. GLIA 62:999–1013. https://doi.org/10.1002/glia.22657

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moura AC de, Lazzari VM, Agnes G, Almeida S, Giovenardi M, Veiga AB eatriz G da (2014) Transcriptional expression study in the central nervous system of rats: what gene should be used as internal control? Einstein (Sao Paulo) 12:336–341. https://doi.org/10.1590/S1679-45082014AO3042

  28. Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L (2005) Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 133:667–678. https://doi.org/10.1016/J.NEUROSCIENCE.2004.11.020

    Article  CAS  PubMed  Google Scholar 

  29. Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Sol VV, Decouty C, Narros-Fernández P, Clemente D, Egea J (2021) TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol 178:3395–3413. https://doi.org/10.1111/BPH.15488

    Article  CAS  PubMed  Google Scholar 

  30. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24. https://doi.org/10.1016/J.BRAINRES.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  31. Gras G, Samah B, Hubert A, Léone C, Porcheray F, Rimaniol AC (2012) EAAT expression by macrophages and microglia: still more questions than answers. Amino Acids 42:221–229. https://doi.org/10.1007/S00726-011-0866-6

    Article  CAS  PubMed  Google Scholar 

  32. Krishnan VS, Shavlakadze T, Grounds MD, Hodgetts SI, Harvey AR (2018) Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology 19:385–399. https://doi.org/10.1007/S10522-018-9765-5

    Article  CAS  PubMed  Google Scholar 

  33. Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 4:727–732. https://doi.org/10.1242/DMM.007724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jha MK, Morrison BM (2020) Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 14:589582. https://doi.org/10.3389/FNCEL.2020.589582/FULL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. López-Redondo F, Nakajima K, Honda S, Kohsaka S (2000) Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res 76:429–435. https://doi.org/10.1016/S0169-328X(00)00022-X

    Article  PubMed  Google Scholar 

  36. Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in metal fatigue. J Neuroinflammat 1:1–9. https://doi.org/10.1186/1742-2094-1-22/FIGURES/1

    Article  Google Scholar 

  37. Tilleux S, Hermans E (2007) Neuroinflammation and Regulation of Glial Glutamate Uptake in Neurological Disorders. J Neurosci Res 85:2059-2070. https://doi.org/10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  38. Du X, Li J, Li M, Yang X, Qi Z, Xu B, Liu W, Xu Z, Deng Y (2020) Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell Biosci 10:1–10. https://doi.org/10.1186/S13578-020-00393-4/METRICS

    Article  Google Scholar 

  39. Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR (2020) Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 11:2602–2614. https://doi.org/10.1021/ACSCHEMNEURO.0C00272

    Article  CAS  PubMed  Google Scholar 

  40. Brioschi S, d’Errico P, Amann LS, Janova H, Wojcik SM, Meyer-Luehmann M, Rajendran L, Wieghofer P, Paolicelli RC, Biber K (2020) Detection of Synaptic Proteins in Microglia by Flow Cytometry. Front Mol Neurosci 13:149. https://doi.org/10.3389/FNMOL.2020.00149/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J (2011) Microglia and neuronal cell death. Neuron Glia Biol 7:25–40. https://doi.org/10.1017/S1740925X12000014

    Article  PubMed  Google Scholar 

  42. Graeber MB (2010) Changing face of microglia. Science (New York, NY) 330:783–788. https://doi.org/10.1126/SCIENCE.1190929

  43. Malik AR, Willnow TE (2019) Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 20:5671. https://doi.org/10.3390/IJMS20225671

    Article  CAS  PubMed Central  Google Scholar 

  44. Liu C, Zhang Y, Liu Q, Jiang L, Li M, Wang S, Long T, He W, Kong X, Qin G, Chen L, Zhang Y, Zhou J (2018) P2X4-receptor participates in EAAT3 regulation via BDNF-TrkB signaling in a model of trigeminal allodynia. Mol Pain 14:1–15. https://doi.org/10.1177/1744806918795930

    Article  CAS  Google Scholar 

  45. Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, Xia Y (2014) δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171:5417–5430. https://doi.org/10.1111/BPH.12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Massie A, Cnops L, Smolders I, McCullumsmith R, Kooijman R, Kwak S, Arckens L, Michotte Y (2008) High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J Comp Neurol 511:155–172. https://doi.org/10.1002/CNE.21823

    Article  CAS  PubMed  Google Scholar 

  47. Ciesielska A, Matyjek M, Kwiatkowska K (2021) TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci: CMLS 78:1233–1261. https://doi.org/10.1007/S00018-020-03656-Y

    Article  CAS  PubMed  Google Scholar 

  48. O’Callaghan P, Li JP, Lannfelt L, Lindahl U, Zhang X (2015) Microglial Heparan Sulfate Proteoglycans Facilitate the Cluster-of-Differentiation 14 (CD14)/Toll-like Receptor 4 (TLR4)-Dependent Inflammatory Response. J Biol Chem 290:14904–14914. https://doi.org/10.1074/JBC.M114.634337

    Article  PubMed  PubMed Central  Google Scholar 

  49. Korn T, Magnus T, Jung S (2005) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J 19:1878–1880. https://doi.org/10.1096/FJ.05-3748FJE

    Article  CAS  PubMed  Google Scholar 

  50. Haroon E, Miller AH, Sanacora G (2016) Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 42:193–215. https://doi.org/10.1038/npp.2016.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The Cystine/Glutamate Antiporter System xc– in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxid Redox Signal 18:522. https://doi.org/10.1089/ARS.2011.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitagawa Y, Nakaso K, Horikoshi Y, Morimoto M, Omotani T, Otsuki A, Inagaki Y, Sato H, Matsura T (2019) System xc– in microglia is a novel therapeutic target for post-septic neurological and psychiatric illness. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-44006-8

    Article  CAS  Google Scholar 

  53. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S, Moorhouse AJ, Yoshimura Y, Nabekura J (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540. https://doi.org/10.1038/NCOMMS12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M, Starvaggi-Cucuzza C, Otero K, Piccio L, Cignarella F, Perrucci F, Tamborini M, Genua M, Rajendran L, Menna E, Vetrano S, Fahnestock M, Paolicelli RC, Matteoli M (2018) The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity 48:979–991.e8. https://doi.org/10.1016/J.IMMUNI.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka T, Murakami K, Bando Y, Yoshida S (2015) Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia 63:595–610. https://doi.org/10.1002/GLIA.22770

    Article  PubMed  Google Scholar 

  56. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218. https://doi.org/10.1038/NN.3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelly B, O’Neill LAJ (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784. https://doi.org/10.1038/CR.2015.68

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morgun AV, Malinovskaja NA, Komleva JuK, Lopatina OL, Kuvacheva NV, Panina JuA, Taranushenko TE, Solonchuk RJu, Salmina AB (2014) Structural and functional Heterogenety of astrocytes in the brain: role in neurodegeneration and neuroinflammation. Bull Sib Med 13: 138-148. https://doi.org/10.20538/1682-0363-2014-5-138-148

    Article  Google Scholar 

  59. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/J.NEULET.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  60. Matias I, Morgado J, Gomes FCA (2019) Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 11:59. https://doi.org/10.3389/FNAGI.2019.00059/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan YL, Yuan Y, Tian L (2019) Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 25:351–367. https://doi.org/10.1038/s41380-019-0609-8

    Article  PubMed  PubMed Central  Google Scholar 

  62. Furube E, Kawai S, Inagaki H, Takagi S, Miyata S (2018) Brain Region-dependent Heterogeneity and Dose-dependent Difference in Transient Microglia Population Increase during Lipopolysaccharide-induced Inflammation. Sci Rep 8:2203. https://doi.org/10.1038/S41598-018-20643-3

    Article  PubMed  PubMed Central  Google Scholar 

  63. Doorn KJ, Brevé JJP, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, van Dam AM (2015) Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci 9:84. https://doi.org/10.3389/FNCEL.2015.00084

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stratoulias V, Venero JL, Tremblay M-È, Joseph B (2019) Microglial subtypes: diversity within the microglial community. EMBO J 38:e101997. https://doi.org/10.15252/EMBJ.2019101997

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kreisel T, Wolf B, Keshet E, Licht T (2019) Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia 67:594–618. https://doi.org/10.1002/GLIA.23505

    Article  PubMed  Google Scholar 

  66. Bisht K, Sharma KP, Lecours C, Gabriela Sánchez M, el Hajj H, Milior G, Olmos-Alonso A, Gómez-Nicola D, Luheshi G, Vallières L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay MÈ (2016) Dark microglia: A new phenotype predominantly associated with pathological states. Glia 64:826–839. https://doi.org/10.1002/GLIA.22966

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR), grant no. 18-34-00152.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (I.N.D.); data collection (I.A.S.); data processing (I.A.S., I.N.D.); writing and editing the manuscript (I.A.S., I.N.D.).

Corresponding author

Correspondence to I. N. Dominova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest, both evident and potential, associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 3, pp. 379–396https://doi.org/10.31857/S0869813922030098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starovoytova, I.A., Dominova, I.N. An in vitro Study of the Effect of Bacterial Lipopolysaccharide on Transcription Levels of SLC Family Transporter Genes in Microglia. J Evol Biochem Phys 58, 508–522 (2022). https://doi.org/10.1134/S0022093022020193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022020193

Keywords:

Navigation