Skip to main content
Log in

Development of Hippocampus-Associated Cognitive Dysfunction in Huntington’s Disease Mouse Model

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Huntington’s disease is a hereditary, incurable, neurodegenerative disease characterized by movement disorders—progressive choreic hyperkinesia, as well as cognitive and mental disorders, including memory impairment, depression, panic attacks, obsessive compulsions, etc. According to the literature data, mild cognitive impairments begin to manifest even before the appearance of first motor symptoms. Neurodegeneration of the cortex and striatum is believed to play a major role in the development of cognitive dysfunction. At the same time, pathological changes in the hippocampus, which can also cause cognitive impairments, have been studied to a much lesser extent. In the present study, using electrophysiological experiments, morphofunctional analysis, and behavioral tests, we performed a comprehensive assessment of hippocampus-associated changes in YAC128 transgenic mice which model Huntington’s disease. The revealed disturbances in the mechanisms of synaptic plasticity and changes in the morphology of synapses in the hippocampus of YAC128 mice are progressive and occur before motor movement disorders. Thus, the obtained results support the hypothesis of the development of neurodegenerative changes in the hippocampus, which contribute to cognitive dysfunction in Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

HD:

Huntington’s disease

LTP:

long-term potentiation

mHTT:

mutant huntingtin

EPSP:

excitatory postsynaptic potential

PTP:

post-tetanic potentiation

REFERENCES

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971-983. https://doi.org/10.1016/0092-8674(93)90585-e

    Article  Google Scholar 

  2. Van Raamsdonk JM, Warby SC, Hayden MR (2007) Selective degeneration in YAC mouse models of Huntington disease. Brain Res Bull 72: 124-131. https://doi.org/10.1016/j.brainresbull.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  3. Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25: 4169-4180. https://doi.org/10.1523/JNEUROSCI.0590-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lichter DG, Hershey LA (2010) Before chorea: pre-Huntington mild cognitive impairment. Neurology 75: 490-491. https://doi.org/10.1212/WNL.0b013e3181ec805b

    Article  PubMed  Google Scholar 

  5. Lawrence AD, Hodges JR, Rosser AE, Kershaw A, French-Constant C, Rubinsztein DC, Robbins TW, Sahakian BJ (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121 (Pt 7): 1329-1341. https://doi.org/10.1093/brain/121.7.1329

    Article  PubMed  Google Scholar 

  6. Nithianantharajah J, Hannan A (2013) Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience 251: 66-74. https://doi.org/10.1016/j.neuroscience.2012.05.043

    Article  CAS  PubMed  Google Scholar 

  7. Tonnesen J, Nagerl UV (2016) Dendritic Spines as Tunable Regulators of Synaptic Signals. Front Psychiatry 7: 101. https://doi.org/10.3389/fpsyt.2016.00101

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I (2016) Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington’s Disease Mouse Model. J Neurosci 36: 125-141. https://doi.org/10.1523/JNEUROSCI.1038-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cepeda C, Hurst RS, Calvert CR, Hernandez-Echeagaray E, Nguyen OK, Jocoy E, Christian LJ, Ariano MA, Levine MS (2003) Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci 23: 961-969. https://doi.org/10.1523/JNEUROSCI.23-03-00961.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Indersmitten T, Tran CH, Cepeda C, Levine MS (2015) Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington’s disease. J Neurophysiol 113: 2953-2966. https://doi.org/10.1152/jn.01056.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murmu RP, Li W, Holtmaat A, Li JY (2013) Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington’s disease. J Neurosci 33: 12997-13009. https://doi.org/10.1523/JNEUROSCI.5284-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt ME, Buren C, Mackay JP, Cheung D, Dal Cengio L, Raymond LA, Hayden M (2018) Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. BMC Biol 16: 58. https://doi.org/10.1186/s12915-018-0526-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spires TL, Grote HE, Garry S, Cordery PM, Van Dellen A, Blakemore C, Hannan AJ (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19: 2799-2807. https://doi.org/10.1111/j.0953-816X.2004.03374.x

    Article  PubMed  Google Scholar 

  14. Chernyuk DP, Zorin AG, Derevtsova KZ, Efimova EV, Prikhodko VA, Sysoev YI, Vlasova OL, Bolsunovskaia MV, Bezprozvanny IB (2021) Automatic analysis of the “Morris water maze” behavioral test data. Zhurn Vysshei Nervn Deyatelnosti Im IP Pavlova 71: 126-135. https://doi.org/10.31857/S0044467721010044

    Article  Google Scholar 

  15. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31: 21-29.

    PubMed  PubMed Central  Google Scholar 

  16. Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KP (2006) Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet 15: 1690-1703. https://doi.org/10.1093/hmg/ddl092

    Article  CAS  PubMed  Google Scholar 

  17. Paldino E, Giampa C, Montagna E, Angeloni C, Fusco FR (2019) Modulation of Phospho-CREB by Systemically Administered Recombinant BDNF in the Hippocampus of the R6/2 Mouse Model of Huntington’s Disease. Neurosci J 2019: 8363274. https://doi.org/10.1155/2019/8363274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Usdin MT, Shelbourne PF, Myers RM, Madison DV (1999) Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet 8: 839-846. https://doi.org/10.1093/hmg/8.5.839

    Article  CAS  PubMed  Google Scholar 

  19. Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci 20: 5115-5123. https://doi.org/10.1523/JNEUROSCI.20-13-05115.2000 10.1523/JNEUROSCI.20-13-05115.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolodziejczyk K, Parsons MP, Southwell AL, Hayden MR, Raymond LA (2014) Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 9: e94562. https://doi.org/10.1371/journal.pone.0094562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA. (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27: 4424-4434. https://doi.org/10.1523/JNEUROSCI.5113-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Southwell AL, Warby SC, Carroll JB, Doty CN, Skotte NH, Zhang W, Villanueva EB, Kovalik V, Xie Y, Pouladi MA, Collins JA, Yang XW, Franciosi S, Hayden MR (2013) A fully humanized transgenic mouse model of Huntington disease. Hum Mol Genet 22: 18-34. https://doi.org/10.1093/hmg/dds397

    Article  CAS  PubMed  Google Scholar 

  23. McCann RF, Ross DA (2017) A Fragile Balance: Dendritic Spines, Learning, and Memory. Biol Psychiatry 82: e11-e13. https://doi.org/10.1016/j.biopsych.2017.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bulley SJ, Drew CJ, Morton AJ (2012) Direct Visualisation of Abnormal Dendritic Spine Morphology in the Hippocampus of the R6/2 Transgenic Mouse Model of Huntington’s Disease. J Huntingtons Dis 1: 267-273. https://doi.org/10.3233/JHD-120024

    Article  PubMed  Google Scholar 

  25. Richards P, Didszun C, Campesan S, Simpson A, Horley B, Young KW, Glynn P, Cain K, Kyriacou CP, Giorgini F, Nicotera P (2011) Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington’s disease. Cell Death Differ 18: 191-200. https://doi.org/10.1038/cdd.2010.127

    Article  CAS  PubMed  Google Scholar 

  26. Koch ET, Woodard CL, Raymond LA (2018) Direct assessment of presynaptic modulation of cortico-striatal glutamate release in a Huntington’s disease mouse model. J Neurophysiol 120: 3077-3084. https://doi.org/10.1152/jn.00638.2018

    Article  CAS  PubMed  Google Scholar 

  27. Smith-Dijak AI, Nassrallah WB, Zhang LYJ, Geva M, Hayden MR, Raymond LA (2019) Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease. Front Cell Neurosci 13: 209. https://doi.org/10.3389/fncel.2019.00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19: 10428-10437. https://doi.org/10.1523/JNEUROSCI.19-23-10428.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Begeti F, Schwab LC, Mason SL, Barker RA (2016) Hippocampal dysfunction defines disease onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 87: 975-981. https://doi.org/10.1136/jnnp-2015-312413

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (RSF, grant No. 19-15-00184) and the Ministry of Science and Higher Education of the Russian Federation within the World-Class Research Center (WCRC) program “Advanced digital technologies” (treaty No. 075-15-2020-934 of November 17, 2020) in the following proportion: experiments illustrated in Figs. 1, 2b–2e were supported by the RSF; the experiment in Fig. 2a was financed by the WCRC program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (N.A.K., A.I.E., I.B.B.); data collection (N.A.K., A.I.E., E.D.G., S.A.P., G.E.I.); data processing (N.A.K., A.I.E., E.D.G., S.A.P., G.E.I.); writing and editing the manuscript (N.A.K., A.I.E., O.L.B., I.B.B.).

Corresponding authors

Correspondence to N. A. Kraskovskaya or I. B. Bezprozvanny.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, No. 12, pp. 1490–1504https://doi.org/10.31857/S0869813921120050.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraskovskaya, N.A., Erofeev, A.I., Grishina, E.D. et al. Development of Hippocampus-Associated Cognitive Dysfunction in Huntington’s Disease Mouse Model. J Evol Biochem Phys 57, 1449–1460 (2021). https://doi.org/10.1134/S0022093021060211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021060211

Keywords:

Navigation