Skip to main content
Log in

The motion aftereffect as a universal phenomenon in sensory systems involved in spatial orientation. III. Aftereffect of motion adaptation in the somatosensory and vestibular systems

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The motion aftereffect may be considered as a consequence of visual illusions of self-motion (vection) and the persistence of sensory information processing. There is ample experimental evidence indicating a uniformity of mechanisms that underlie motion aftereffects in different modalities based on the principle of motion detectors. Currently, there is firm ground to believe that the motion aftereffect is intrinsic to all sensory systems involved in spatial orientation, that motion adaptation in one sensory system elicits changes in another one, and that such adaptation is of great adaptive importance for spatial orientation and motion of an organism. This review seeks to substantiate these ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seizova-Cajic, T. and Azzi, R., Conflict with vision diminishes proprioceptive adaptation to muscle vibration, Exp. Brain Res., 2011, vol. 211, no. 2, pp. 169–175.

    Article  PubMed  Google Scholar 

  2. Roy, J.E. and Cullen, K.E., Selective processing of vestibular reafference during self-generated head motion, J. Neurosci., 2001, vol. 21, pp. 2131–2142.

    CAS  PubMed  Google Scholar 

  3. Roy, J.E. and Cullen, K.E., Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei, J. Neurosci., 2004, vol. 24, pp. 2101–2111.

    Google Scholar 

  4. McCrea, R.A., Gdowski, G.T., Boyle, R., and Belton, T., Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons, J. Neurophysiol., 1999, vol. 82, no. 1, pp. 416–428.

    CAS  PubMed  Google Scholar 

  5. Guedry, F.E., Perception of motion and position relative to the earth, an overview, Ann. N. Y. Acad. Sci., 1992, vol. 656, pp. 15–28.

    Google Scholar 

  6. Ercoline, W.R., Devilbiss, C.A., Yauch, D.W., and Brown, D.L., Post-roll effects on attitude perception: “the Gillingham Illusion”, Aviat. Space Environ. Med., 2000, vol. 71, no. 5, pp. 489–495.

    CAS  PubMed  Google Scholar 

  7. Fitzpatrick, R. and McCloskey, D.I., Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans, J. Physiol., 1994, vol. 478, pt. 1, pp. 173–186.

    PubMed  Google Scholar 

  8. Grabherr, L., Nicoucar, K., Mast, F.W., and Merfeld, D.M., Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency, Exp. Brain Res., 2008, vol. 186, pp. 677–681.

    Article  PubMed  Google Scholar 

  9. Clark, B.B. and Graybiel, A., The effect of angular acceleration on sound localization: the audiogyral illusion, J. Psychol., 1949, vol. 28, pp. 235–244.

    Article  CAS  PubMed  Google Scholar 

  10. Lester, G. and Morant, R., Apparent sound displacement during vestibular stimulation, Am. J. Psychol., 1970, vol. 83, pp. 554–566.

    Article  CAS  PubMed  Google Scholar 

  11. Lewald, J. and Karnath, H.O., Vestibular influence on human auditory space perception, Eur. J. Neurosci., 2000, vol. 84, pp. 1107–1111.

    CAS  Google Scholar 

  12. Lewald, J. and Karnath, H.O., Sound lateralization during passive whole-body rotation, Eur. J. Neurosci., 2001, vol. 13, pp. 2268–2272.

    Article  CAS  PubMed  Google Scholar 

  13. Warren, R. and Wertheim, A.H., Perception and control of self-motion, Erlbaum, New Jersey, London, 1990.

    Google Scholar 

  14. Väljamäe, A., Auditorily-induced illusory selfmotion: A review, Brain Res. Rev., 2009, vol. 61, pp. 240–255.

    Article  PubMed  Google Scholar 

  15. Ribot-Ciscar, E., Roll, J.P., and Gilhodes, J.C., Human motor unit activity during post-vibratory and imitative voluntary muscle contractions, Brain Res., 1996, vol. 716, pp. 84–90.

    Article  CAS  PubMed  Google Scholar 

  16. Ribot-Ciscar, E., Rossi-Durand, C., and Roll, J.P., Muscle spindle activity following muscle tendon vibration in man, Neurosci. Lett., 1998, vol. 258, no. 3, pp. 147–150.

    Article  CAS  PubMed  Google Scholar 

  17. Seizova-Cajic, T. and Sachtler, W.L., Adaptation of a bimodal integration stage: visual input needed during neck muscle vibration to elicit a motion aftereffect, Exp. Brain Res., 2007, vol. 181, no. 1, pp. 117–129.

    Article  PubMed  Google Scholar 

  18. Deas, R.W., Roach, N.W., and McGraw, P.V., Distortions of perceived auditory and visual space following adaptation to motion, Exp. Brain Res., 2008, vol. 191, pp. 473–485.

    Article  PubMed  Google Scholar 

  19. Kuroki, S., Watanabe, J., Mabuchi, K., Tachi, S., and Nishida, S., Directional remapping in tactile inter-finger apparent motion: a motion aftereffect study, Exp. Brain Res., 2012, vol. 216, pp. 311–320.

    Article  PubMed  Google Scholar 

  20. Thalman, W.A., The after-effect of movement in the sense of touch, Am. J. Psychol., 1922, vol. 33, pp. 268–276.

    Article  Google Scholar 

  21. Hollins, M. and Favorov, O., The tactile movement aftereffect, Somatosens. Mot. Res., 1994, vol. 11, pp. 153–162.

    Article  CAS  PubMed  Google Scholar 

  22. Lerner, E.A. and Craig, J.C., The prevalence of tactile motion aftereffects, Somatosens. Mot. Res., 2002, vol. 19, pp. 24–29.

    Article  PubMed  Google Scholar 

  23. Planetta, P.J. and Servos, P., The tactile motion aftereffect revisited, Somatosens. Mot. Res., 2008, vol. 25, pp. 93–99.

    Article  PubMed  Google Scholar 

  24. Andreeva, I.G., Motion aftereffect as a universal phenomenon for sensory systems involved in spatial orientation. II. Auditory aftereffect, Zh. Evol. Biokh. Fiziol., 2015, vol. 51, no. 3, pp. 145–153.

    CAS  Google Scholar 

  25. Jones, M.B. and Vierck, C.J., Jr., Length discrimination on the skin, Am. J. Psychol., 1973, vol. 86, no. 1, pp. 49–60.

    Article  CAS  Google Scholar 

  26. Konkle, T., Wang, Q., Hayward, V., and Moore, C.I., Motion aftereffects transfer between touch and vision, Curr. Biol., 2009, vol. 19, no. 9, pp. 745–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Planetta, P.J. and Servos, P., Site of stimulation effects on the prevalence of the tactile motion aftereffect, Exp. Brain Res., 2010, vol. 202, pp. 377–383.

    Article  PubMed  Google Scholar 

  28. McIntyre, S., Holcombe, A.O., Birznieks, I., and Seizova-Cajic, T., Tactile motion adaptation reduces perceived speed but shows no evidence of direction sensitivity, PLOS ONE, 2012, vol. 7, no. 9.

  29. Kuroki, S., Watanabe, J., Kawakami, N., Tachi, S., and Nishida, S., Somatotopic dominance in tactile temporal processing, Exp. Brain Res., 2010, vol. 203, pp. 51–62.

    Article  PubMed  Google Scholar 

  30. Sanabria, D., Soto-Faraco, S., and Spence, C., Spatiotemporal interactions between audition and touch depend on hand posture, Exp. Brain Res., 2005, vol. 165, pp. 505–514.

    Article  PubMed  Google Scholar 

  31. Soto-Faraco, S., Spence, C., Lloyd, D., and Kingstone, A., Moving multisensory research along motion perception across sensory modalities, Curr. Dir. Psychol. Sci., 2004, vol. 13, pp. 29–32.

    Article  Google Scholar 

  32. Costanzo, R.M. and Gardner, E.P., A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys, J. Neurophysiol., 1980, vol. 43, pp. 1319–1341.

    CAS  PubMed  Google Scholar 

  33. Pei, Y.C., Hsiao, S.S., Craing, J.C., and Bensmaïa, S.J., Shape invariant coding of motion direction in somatosensory cortex, PLoS Biol., 2010, vol. 8, no. 4:e1000305.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ruiz, S., Crespo, P., and Romo, R., Representation of moving tactile stimuli in the somatic sensory cortex of awake monkeys, J. Neurophysiol., 1995, vol. 73, pp. 525–537.

    CAS  PubMed  Google Scholar 

  35. Warren, S., Hamalainen, H.A., and Gardner, E.P., Objective classification of motion- and directionsensitive neurons in primary somatosensory cortex of awake monkeys, J. Neurophysiol., 1986, vol. 56, pp. 598–622.

    CAS  PubMed  Google Scholar 

  36. Mather, G., Pavan, A., Campana, G., and Casco, C., The motion aftereffect reloaded, Trends Cogn. Sci., 2008, vol. 12, no. 12, pp. 481–487.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dong, C.J., Swindale, N.V., Zakarauskas, P., Hayward, V., and Cynader, M.S., The auditory motion aftereffect: its tuning and specificity in the spatial and frequency domains, Percept. Psychophys., 2000, vol. 62, pp. 1099–1111.

    Article  CAS  PubMed  Google Scholar 

  38. Kaas, J.H., Nelson, R.J., Sur, M., Lin, C.S., and Merzenich, M.M., Multiple representations of the body within the primary somatosensory cortex of primates, Science, 1979, vol. 204, pp. 521–523.

    Article  CAS  PubMed  Google Scholar 

  39. Kurth, R., Villringer, K., Curio, G., Wolf, K.J., Krause, T., Repenthin, J., Schwiemann, J., Deuchert, M., and Villringer, A., fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex, Neuroreport, 2000, vol. 11, pp. 1487–1491.

    Article  CAS  PubMed  Google Scholar 

  40. Graziano, M.S., Yap, G.S., and Gross, C.G., Coding of visual space by premotor neurons, Science, 1994, vol. 266, pp. 1054–1057.

    Article  CAS  PubMed  Google Scholar 

  41. Andreeva, I.G., Vartanyan, I.A., and Tsirulnikov, E.M., Summational properties of the somatosensory system detected during a study of tactile sensations evoked by electrical current and focused ultrasound, Zh. Evol. Biokh. Fiziol., 1991, vol. 27, no. 1, pp. 70–74.

    CAS  Google Scholar 

  42. Watanabe, J., Hayashi, S., Kajimoto, H., Tachi, S., and Nishida, S., Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors, Exp. Brain Res., 2007, vol. 180, pp. 577–582.

    Article  PubMed  Google Scholar 

  43. Bensmaïa, S.J., Denchev, P.V., Dammann, J.F., Craig, J.C., and Hsiao, S.S., The representation of stimulus orientation in the early stages of somatosensory processing, J. Neurosci., 2008, vol. 28, pp. 776–786.

    Article  PubMed  Google Scholar 

  44. Gardner, E.P. and Kandel, E.R., Touch, Principles of Neural Science, Health Professions Division, Kandel, E.R., Schwartz, J.H., and Jessell, T.M., Eds., 4th Ed., 2000, New York, pp. 451–471.

  45. Bremmer, F., Schlack, A., Shah, N.J., Zafiris, O., Kubischik, M., Hoffmann, K., Zilles, K., and Fink, G.R., Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys, Neuron, 2001, vol. 29, pp. 287–296.

    Article  CAS  PubMed  Google Scholar 

  46. Burton, H., Abend, N.S., MacLeod, A.M., Sinclair, R.J., Snyder, A.Z., and Raichle, M.E., Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: A positron emission tomography study, Cerebral Cortex, 1999, vol. 9, pp. 662–674.

    Article  CAS  PubMed  Google Scholar 

  47. Nakashita, S., Saito, D.N., Kochiyama, T., Honda, M., Tanabe, H.C., and Sadato, N., Tactilevisual integration in the posterior parietal cortex: A functional magnetic resonance imaging study, Brain Res. Bull., 2008, vol. 75, pp. 513–525.

    Article  PubMed  Google Scholar 

  48. Polonara, G., Fabri, M., Manzoni, T., and Salvolini, U., Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging, Amer. J. Neuroradiol., 1999, vol. 20, pp. 199–205.

    CAS  Google Scholar 

  49. Summers, I.R., Francis, S.T., Bowtell, R.W., Mc-Glone, F.P., and Clemence, M.A., functionalmagnetic- resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip, J. Acoust. Soc. Am., 2009, vol. 125, pp. 1033–1039.

    Article  PubMed  Google Scholar 

  50. Planetta, P.J. and Servos, P., The postcentral gyrus shows sustained fMRI activation during the tactile motion aftereffect, Exp. Brain Res., 2012, vol. 216, pp. 535–544.

    Article  PubMed  Google Scholar 

  51. Seiffert, A.E., Somers, D.C., Dale, A.M., and Tootell, R.B., Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects, Cereb. Cortex, 2003, vol. 13, pp. 340–349.

    Article  PubMed  Google Scholar 

  52. Blake, R., Sobel, K.V., and James, T.W., Neural synergy between kinetic vision and touch, Psychol. Sci., 2004, vol. 15, pp. 397–402.

    Article  PubMed  Google Scholar 

  53. Hagen, M.C., Franzen, O., McGlone, F., Essick, G., Dancer, C., and Pardo, J.V., Tactile motion activates the human middle temporal/V5 (MT/V5) complex, Eur. J. Neurosci. 2002, vol. 16, pp. 957–964.

    Article  PubMed  Google Scholar 

  54. Lackner, J.R., Induction of illusory self-rotation and nystagmus by a rotating sound-field, Aviat. Space Environ. Med., 1977, vol. 48, no. 2, pp. 129–131.

    CAS  PubMed  Google Scholar 

  55. Straube, A. and Brandt, T., Importance of the visual and vestibular cortex for self-motion perception in man (circularvection), Hum. Neurobiol, 1987, vol. 6, no. 3, pp. 211–218.

    CAS  Google Scholar 

  56. Reynolds, R. and Bronstein, A., The moving platform after-effect reveals dissociation between we know and how we walk, J. Neural Transm., 2007, vol. 114, pp. 1297–1303.

    Article  CAS  PubMed  Google Scholar 

  57. Nooij, S.A.E. and Groen, E.L., Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion, Aviat. Space Environ. Med., 2011, vol. 82, pp. 505–512.

    Google Scholar 

  58. Crane, B.T., Fore-aft translation aftereffects, Exp. Brain Res., 2012, vol. 219, pp. 477–487.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Burke, D., Hagbarth, K.E., Lofstedt, L., and Wallin, B.G., The responses of human muscle spindle endings to vibration during isometric contraction, J. Physiol., 1976, vol. 261, pp. 695–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roll, J.P., Vedel, J.P., and Ribot, E., Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study, Exp. Brain Res., 1989, vol. 76, pp. 213–222.

    Article  CAS  PubMed  Google Scholar 

  61. Naito, E. and Ehrsson, H.H., Somatic sensation of hand–object interactive movement is associated with activity in the left inferior parietal cortex, J. Neurosci., 2006, vol. 26, pp. 3783–3790.

    Article  CAS  PubMed  Google Scholar 

  62. Ishihara, Y., Izumizaki, M., Atsumi, T., and Homma, I., Aftereffects of mechanical vibration and muscle contraction on limb position-sense, Muscle Nerve, 2004, vol. 30, no. 4, pp. 486–492.

    Article  PubMed  Google Scholar 

  63. Seizova-Cajic, T., Smith, J.L., Taylor, J.L., and Gandevia, S.C., Proprioceptive Movement Illusions Due to Prolonged Stimulation: Reversals and Aftereffects, PLoS ONE, 2007, vol. 2, no. 10: e1037.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Seizova-Cajic, T., Smith, J.L., Taylor, J.L., and Gandevia, S.C., Perception of movement extent depends on the extent of previous movements, Exp. Brain Res., 2009, vol. 195, pp. 167–172.

    Article  PubMed  Google Scholar 

  65. Kito, T., Hashimoto, T., Yoneda, T., Katamoto, S., and Naito, E., Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration, Brain Res., 2006, vol. 1114, pp. 75–84.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzales, T.I. and Goble, D.J., Short-term adaptation of joint position sense occurs during and after sustained vibration of antagonistic muscle pairs, Frontiers in Human Neuroscience, 2014, vol. 8, Art. 896.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gurfinkel, V.S., Levik, Yu.S., and Lebedev, A.M., A body scheme concept and motor control, Intellektual’nye protsessy i ikh modelirovanie (Intellectual Processes and Their Modeling, Organization of Motions), Chernavsky, A.V., Ed., Moscow, 1991, pp. 59–105.

  68. Gurfinkel, V.S. and Levik, Yu.S., Musculkar reception and a generalized description of the body position, Fiziol. Chel., 1999, vol. 25, no. 1, pp. 87–97.

    CAS  Google Scholar 

  69. Beauchamp, M.S., Yaser, N.E., Kishan, N., and Ro, T., Human MST but not MT responds to tactile stimulation, J. Neurosci., 2007, vol. 27, pp. 8261–8267.

    Article  CAS  PubMed  Google Scholar 

  70. Ricciardi, E., Vanello, N., Sani, L., Gentili, C., Scilingo, E.P., Landini, L., Cuazzelli, M., Bicchi, A., Haxby, J.V., and Pietrini, P., The effect of visual experience on the development of functional architecture in hMT+, Cereb. Cortex, 2007, vol. 17, pp. 2933–2939.

    Article  PubMed  Google Scholar 

  71. Crane, B.T., Limited interaction between translation and visual motion aftereffects in humans, Exp. Brain Res., 2013, vol. 224, pp. 165–178.

    Article  PubMed  Google Scholar 

  72. Cressman, E.K. and Henriques, D.Y., Sensory recalibration of hand position following visuomotor adaptation, J. Neurophysiol., 2009, vol. 102, no. 6, pp. 3505–3518.

    Article  PubMed  Google Scholar 

  73. Holten, V., Smagt, M.J., Donker, S.F., and Verstraten, F.A.J., Illusory motion of the motion aftereffect induces postural sway, Psychol. Sci., 2014, vol. 25, no. 9, pp. 1831–1834.

    Article  PubMed  Google Scholar 

  74. Altman, Ya.A., Gurfinkel, V.S., Varyagina, O.V., and Levik, Yu.S., The influence of moving sound image on postural reactions and illusion of head turn in humans, Ross. Fiziol. Zh., 2003, vol. 89, no. 6, pp. 756–761.

    Google Scholar 

  75. Grantham, W.D. and Wightman, F.L., Auditory motion aftereffects, Percept. Psychophys., 1979, vol. 26, pp. 403–408.

    Article  CAS  PubMed  Google Scholar 

  76. Andreeva, I.G., Duration of auditory motion aftereffect in short-term adaptation to approaching sound source, Sens. Sist., 2010, vol. 24, no. 4, pp. 28–34.

    Google Scholar 

  77. Bobrova, E.V., Andreeva, I.G., Gvozdeva, A.P., and Antifeev, I.E., Postural reactions and aftereffects evoked by listening to approaching and withdrawing sound images, Abstr. XI Int. Interdiscipl. Congr. “Neuroscience for Medicine and Psychology”, 2015, p. 89.

    Google Scholar 

  78. Andreeva, I.G., Motion aftereffect as a universal phenomenon for sensory systems involved in spatial orientation. I. Visual aftereffect, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 6, pp. 413–419.

    CAS  PubMed  Google Scholar 

  79. Agaeva, M.Yu., Altman, Ya.A., and Kirillova, I.Yu., Effects of a sound source moving in a vertical plane on postural responses in humans, Neurosci. Behav. Physiol., 2006, vol. 36, no. 7, pp. 773–780.

    Article  PubMed  Google Scholar 

  80. Mergner, T., Schweigart, G., Maurer, C., and Blümle, A., Human postural responses to motion of real and virtual visual environments under different support base conditions, Exp. Brain Res., 2005, vol. 167, no. 4, pp. 535–556.

    Article  CAS  PubMed  Google Scholar 

  81. Frisby, J.P., Seeing: Illusion, Brain and Mind, Oxford University Press, 1979.

    Google Scholar 

  82. Konkle, T. and Moore, C.I., What can crossmodal aftereffects reveal about neural representation and dynamics? Communicative & Integrative Biology, 2009, vol. 2, pp. 479–481.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Andreeva.

Additional information

Original Russian Text © I.G. Andreeva, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 5, pp. 307—315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, I.G. The motion aftereffect as a universal phenomenon in sensory systems involved in spatial orientation. III. Aftereffect of motion adaptation in the somatosensory and vestibular systems. J Evol Biochem Phys 52, 335–345 (2016). https://doi.org/10.1134/S002209301605001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209301605001X

Keywords

Navigation