Skip to main content
Log in

The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2016

Abstract

The brain leptin signaling system plays a key role in the regulation of feeding behavior, peripheral metabolism, functions of the nervous and endocrine systems; its abnormalities lead to metabolic disorders, including metabolic syndrome (MS) and type 2 diabetes mellitus (DM2). This system is activated by leptin, which is produced by adipocytes and then penetrates into the brain through the blood–brain barrier, where leptin binds to leptin receptors OBRb. This leads to an activation of tyrosine kinase JAK2, which phosphorylates tyrosine-containing sites located in the cytoplasmic domain of the receptor, resulting in stimulation of phosphatidylinositol-3-kinase, transcription factors STAT3 and STAT5, phosphatase SHP2 and mitogen-activated protein kinases. Reduction in the number of functionally active leptin receptors and abnormalities in the downstream components of leptin cascades in nerve cells lead to leptin resistance. Since the leptin system in hypothalamic neurons is closely interrelated with the insulin, melanocortin, dopaminergic and other signaling systems, leptin resistance induces multiple functional disorders in the CNS and at the periphery. Restoring the brain leptin system functions is one of the promising approaches to treat and prevent metabolic disorders, including MS and DM2. This review addresses the structural-functional organization of the leptin signaling system, its functional interaction with other brain signaling systems, causes and consequences of central leptin resistance as well as approaches aimed at restoring leptin functions in hypothalamic neurons under MS and DM2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brydon, L., Adiposity, leptin and stress reactivity in humans, Biol. Psychol., 2011, vol. 86, pp. 114–120.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mantzoros, C.S., Magkos, F., Brinkoetter, M., Sienkiewicz, E., Dardeno, T.A., Kim, S.Y., Hamnvik, O.P., and Koniaris, A., Leptin in human physiology and pathophysiology, Am. J. Physiol., 2011, vol. 301, pp. 567–584.

    Google Scholar 

  3. Carter, S., Caron, A., Richard, D., and Picard, F., Role of leptin resistance in the development of obesity in older patients, Clin. Interv. Aging, 2013, vol. 8, pp. 829–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Ohannesian, J.P., Marco, C.C., McKee, L.J., Bauer, T.L., et al., Serum immunoreactive–leptin concentrations in normal-weight and obese humans, N. Engl. J. Med., 1996, vol. 334, pp. 292–295.

    Article  CAS  PubMed  Google Scholar 

  5. Mohammadzadeh, G. and Zarghami, N., Serum leptin level is reduced in non-obese subjects with type 2 diabetes, Int. J. Endocrinol. Metab., 2013, vol. 11, pp. 3–10.

    PubMed  Google Scholar 

  6. Shpakov, A., Chistyakova, O., Derkach, K., and Bondareva, V., Hormonal signaling systems of the brain in diabetes mellitus, Neurodegenerative Diseases, Chang, R.C.-C., Ed., Intech Open Access Publisher, Rijeka, Croatia, 2011, pp. 349–386.

    Google Scholar 

  7. Shpakov, A.O. and Derkach, K.V., Peptidergic signaling systems of the brain under diabetes mellitus, Tsitol., 2012, vol. 54, no. 10, pp. 733–741.

    CAS  Google Scholar 

  8. Shapakov, A.O., Role of disturbances in hormonal signaling systems in etiology and pathogenesis of diabetes mellitus, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 6, pp. 482–486.

    Google Scholar 

  9. Friedman, J.M. and Halaas, J.L., Leptin and the regulation of body weight in mammals, Nature, 1998, vol. 395, pp. 763–770.

    Article  CAS  PubMed  Google Scholar 

  10. Mütze, J., Roth, J., Gerstberger, R., Matsumura, K., and Hübschle, T., Immunohistochemical evidence of functional leptin receptor expression in neuronal and endothelial cells of the rat brain, Neurosci. Lett., 2006, vol. 394, pp. 105–110.

    Article  PubMed  CAS  Google Scholar 

  11. Marino, J.S., Xu, Y., and Hill, J.W., Central insulin and leptin-mediated autonomic control of glucose homeostasis, Trends Endocrinol. Metab., 2011, vol. 22, pp. 275–285.

    CAS  PubMed  Google Scholar 

  12. Lee, G.H., Proenca, R., Montez, J.M., Carroll, K.M., Darvishzadeh, J.G., Lee, J.I., and Friedman, J.M., Abnormal splicing of the leptin receptor in diabetic mice, Nature, 1996, vol. 379, pp. 632–635.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Z., Ceccarini, G., Eisenstein, M., Tan, K., and Friedman, J.M., Phenotypic effects of an induced mutation of the ObRa isoform of the leptin receptor, Mol. Metab., 2013, vol. 2, pp. 364–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hileman, S.M., Pierroz, D.D., Masuzaki, H., Bjorbaek, C., El-Haschimi, K., Banks, W.A., and Flier, J.S., Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity, Endocrinology, 2002, vol. 143, pp. 775–783.

    Article  CAS  PubMed  Google Scholar 

  15. Tu, H., Kastin, A.J., Hsuchou, H., and Pan, W., Soluble receptor inhibits leptin transport, J. Cell. Physiol., 2008, vol. 214, pp. 301–305.

    Article  CAS  PubMed  Google Scholar 

  16. Matheny, M., Shapiro, A., Tümer, N., and Scarpace, P.J., Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats, Neuropharmacology, 2011, vol. 60, pp. 480–487.

    Article  CAS  PubMed  Google Scholar 

  17. Roujeau, C., Jockers, R., and Dam, J., New pharmacological perspectives for the leptin receptor in the treatment of obesity, Front. Endocrinol. (Lausanne), 2014, vol. 5, p. 167.

    Google Scholar 

  18. Iserentant, H., Peelman, F., Defeau, D., Vandekerckhove, J., Zabeau, L., and Tavernier, J., Mapping of the interface between leptin and the leptin receptor CRH2 domain, J. Cell. Sci., 2005, vol. 118, pp. 2519–2527.

    Article  CAS  PubMed  Google Scholar 

  19. Peelman, F., Van Beneden, K., Zabeau, L., Iserentant, H., Ulrichts, P., Defeau, D., Verhee, A., Catteeuw, D., Elewaut, D., and Tavernier, J., Mapping of the leptin binding sites and design of a leptin antagonist, J. Biol. Chem., 2004, vol. 279, pp. 41038–41046.

    Article  CAS  PubMed  Google Scholar 

  20. Zabeau, L., Verhee, A., Catteeuw, D., Faes, L., Seeuws, S., Decruy, T., Elewaut, D., Peelman, F., and Tavernier, J., Selection of non-competitive leptin antagonists using a random nanobody-based approach, Biochem. J., 2012, vol. 441, pp. 425–434.

    Article  CAS  PubMed  Google Scholar 

  21. Niv-Spector, L., Shpilman, M., Boisclair, Y., and Gertler, A., Large-scale preparation and characterization of non-pegylated and pegylated superactive ovine leptin antagonist, Protein Expr. Purif., 2012, vol. 81, pp. 186–192.

    Article  CAS  PubMed  Google Scholar 

  22. Shpilman, M., Niv-Spector, L., Katz, M., Varol, C., Solomon, G., Ayalon-Soffer, M., Boder, E., Halpern, Z., Elinav, E., and Gertler, A., Development and characterization of high affinity leptins and leptin antagonists, J. Biol. Chem., 2011, vol. 286, pp. 4429–4442.

    Article  CAS  PubMed  Google Scholar 

  23. Gertler, A., Shinder, D., Yosefi, S., Shpilman, M., Rosenblum, C.I., Ruzal, M., Seroussi, E., and Friedman-Einat, M., Pegylated leptin antagonist with strong orexigenic activity in mice is not effective in chickens, J. Exp. Biol., 2014, vol. 217, pp. 180–184.

    Article  CAS  PubMed  Google Scholar 

  24. Zabeau, L., Peelman, F., and Tavernier, J., Leptin: From structural insights to the design of antagonists, Life Sci., 2015, pii: S0024-3205(15)00256-8. doi: 10.1016/j.lfs.2015.04.015.

    Google Scholar 

  25. Peelman, F., Iserentant, H., De Smet, A.-S., Vandekerckhove, J., Zabeau, L., and Tavernier, J., Mapping of binding site III in the leptin receptor and modeling of a hexameric leptin–leptin receptor complex, J. Biol. Chem., 2006, vol. 281, pp. 15 496–15 504.

    Article  CAS  Google Scholar 

  26. Moharana, K., Zabeau, L., Peelman, F., Ringler, P., Stahlberg, H., Tavernier, J., Savvides, S.N., et al., Structural and mechanistic paradigm of leptin receptor activation revealed by complexes with wild-type and antagonist leptons, Structure, 2014, vol. 22, pp. 866–877.

    Article  CAS  PubMed  Google Scholar 

  27. Park, H.K. and Ahima, R.S., Leptin signaling, F1000Prime Rep., 2014, vol. 6, p. 73.

    PubMed  PubMed Central  Google Scholar 

  28. Vaisse, C., Halaas, J.L., Horvath, C.M., Darnell, J.E., Stoffel, M., and Friedman, J.M., Leptin activation of Stat3 in the hypothalamus of wildtype and ob/ob mice but not db/db mice, Nat. Genet., 1996, vol. 14, pp. 95–97.

    Article  CAS  PubMed  Google Scholar 

  29. Bjorbak, C., Lavery, H.J., Bates, S.H., Olson, R.K., Davis, S.M., Flier, J.S., and Myers, M.G., SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985, J. Biol. Chem., 2000, vol. 275, pp. 40649–40657.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, L., You, J., Yu, X., Gonzalez, L., Yu, Y., Wang, Q., Yang, G., Li, W., Li, C., and Liu, Y., Tyrosine-dependent and-independent actions of leptin receptor in control of energy balance and glucose homeostasis, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 18619–18624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piper, M.L., Unger, E.K., Myers, M.G., Jr., and Xu, A.W., Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons, Mol. Endocrinol., 2008, vol. 22, pp. 751–759.

    Article  CAS  PubMed  Google Scholar 

  32. Mütze, J., Roth, J., Gerstberger, R., and Hubschle, T., Nuclear translocation of the transcription factor STAT5 in the rat brain after systemic leptin administration, Neurosci. Lett., 2007, vol. 417, pp. 286–291.

    Article  PubMed  CAS  Google Scholar 

  33. Gong, Y., Ishida-Takahashi, R., Villanueva, E.C., Fingar, D.C., Munzberg, H., and Myers, M.G., The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms, J. Biol. Chem., 2007, vol. 282, pp. 31019–31027.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J.Y., Muenzberg, H., Gavrilova, O., Reed, J.A., Berryman, D., Villanueva, E.C., Louis, G.W., Leinninger, G.M., Bertuzzi, S., Seeley, R.J., Robinson, G.W., Myers, M.G., and Hennighausen, L., Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity, PLoS One, 2008, vol. 3, p. e1639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Patterson, C.M., Villanueva, E.C., Greenwald-Yarnell, M., Rajala, M., Gonzalez, I.E., Saini, N., Jones, J., and Myers, M.G., Jr., Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction, Mol. Metab., 2012, vol. 1, pp. 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Galiano, D., Allen, S.J., and Elias, C.F., Role of the adipocyte-derived hormone leptin in reproductive control, Horm. Mol. Biol. Clin. Investig., 2014, vol. 19, pp. 141–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahmouni, K., Sigmund, C.D., Haynes, W.G., and Mark, A.L., Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin, Diabetes, 2009, vol. 58, pp. 536–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krajewska, M., Banares, S., Zhang, E.E., Huang, X., Scadeng, M., Jhala, U.S., Feng, G.S., and Krajewski, S., Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase, Am. J. Pathol., 2008, vol. 172, pp. 1312–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. You, J., Yu, Y., Jiang, L., Li, W., Yu, X., Gonzalez, L., Yang, G., Ke, Z., Li, C., and Liu, Y., Signaling through Tyr985 of leptin receptor as an age/ diet-dependent switch in the regulation of energy balance, Mol. Cell. Biol., 2010, vol. 30, pp. 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, Y. and Rui, L., Leptin signaling and leptin resistance, Front. Med., 2013, vol. 7, pp. 207–222.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Niswender, K.D., Morton, G.J., Stearns, W.H., Rhodes, C.J., Myers, M.G., Jr., and Schwartz, M.W., Intracellular signalling. Key enzyme in leptin-induced anorexia, Nature, 2001, vol. 413, pp. 794–795.

    Article  CAS  PubMed  Google Scholar 

  42. Morton, G.J., Gelling, R.W., Niswender, K.D., Morrison, C.D., Rhodes, C.J., and Schwartz, M.W., Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons, Cell. Metab., 2005, vol. 2, pp. 411–420.

    Article  CAS  PubMed  Google Scholar 

  43. Rui, L., SH2B1 regulation of energy balance, body weight, and glucose metabolism, World J. Diabetes, 2014, vol. 5, pp. 511–526.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, A.W., Kaelin, C.B., Takeda, K., Akira, S., Schwartz, M.W., and Barsh, G.S., PI3K integrates the action of insulin and leptin on hypothalamic neurons, J. Clin. Invest., 2005, vol. 115, pp. 951–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, Y.B., Uotani, S., Pierroz, D.D., Flier, J.S., and Kahn, B.B., In vivo administration of leptin activates signal transduction directly in insulinsensitive tissues: overlapping but distinct pathways from insulin, Endocrinology, 2000, vol. 141, pp. 2328–2339.

    CAS  PubMed  Google Scholar 

  46. Lin, X., Taguchi, A., Park, S., Kushner, J.A., Li, F., Li, Y., and White, M.F., Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes, J. Clin. Invest., 2004, vol. 114, pp. 908–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren, D., Zhou, Y., Morris, D., Li, M., Li, Z., and Rui, L., Neuronal SH2B1 is essential for controlling energy and glucose homeostasis, J. Clin. Invest., 2007, vol. 117, pp. 397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pearce, L.R., Joe, R., Doche, M.E., Su, H.W., Keogh, J.M., Henning, E., Argetsinger, L.S., Bochukova, E.G., Cline, J.M., Garg, S., Saeed, S., Shoelson, S., O’Rahilly, S., Barroso, I., Rui, L., Farooqi, I.S., and Carter-Su, C., Functional characterization of obesity-associated variants involving the α and β isoforms of human SH2B1, Endocrinology, 2014, vol. 155, pp. 3219–3226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kitamura, T., Feng, Y., Kitamura, Y.I., Chua, S.C., Jr., Xu, A.W., Barsh, G.S., Rossetti, L., and Accili, D., Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake, Nat. Med., 2006, vol. 12, pp. 534–540.

    Article  CAS  PubMed  Google Scholar 

  50. Yang, G., Lim, C.Y., Li, C., Xiao, X., Radda, G.K., Cao, X., and Han, W., FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1, J. Biol. Chem., 2009, vol. 284, pp. 3719–3727.

    Article  CAS  PubMed  Google Scholar 

  51. Taniguchi, C.M., Emanuelli, B., and Kahn, C.R., Critical nodes in signalling pathways: insights into insulin action, Nat. Rev. Mol. Cell. Biol., 2006, vol. 7, pp. 85–96.

    Article  CAS  PubMed  Google Scholar 

  52. Kim, M.S., Pak, Y.K., Jang, P.G., Namkoong, C., Choi, Y.S., Won, J.C., Kim, K.S., Kim, S.W., Kim, H.S., Park, J.Y., Kim, Y.B., and Lee, K.U., Role of hypothalamic FoxO1 in the regulation of food intake and energy homeostasis, Nat. Neurosci., 2006, vol. 9, pp. 901–906.

    Article  CAS  PubMed  Google Scholar 

  53. Plum, L., Lin, H.V., Dutia, R., Tanaka, J., Aizawa, K.S., Matsumoto, M., Kim, A.J., Cawley, N.X., Paik, J.H., Loh, Y.P., DePinho, R.A., Wardlaw, S.L., and Accili, D., The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake, Nat. Med., 2009, vol. 15, pp. 1195–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadagurski, M., Leshan, R.L., Patterson, C., Rozzo, A., Kuznetsova, A., Skorupski, J., Jones, J.C., Depinho, R.A., Myers, M.G., Jr., and White, M.F., IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action, Cell. Metab., 2012, vol. 15, pp. 703–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blouet, C., Ono, H., and Schwartz, G.J., Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis, Cell. Metab., 2008, vol. 8, pp. 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanida, M., Yamamoto, N., Morgan, D.A., Kurata, Y., Shibamoto, T., and Rahmouni, K., Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase, J. Neurosci., 2015, vol. 35, pp. 474–484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dagon, Y., Hur, E., Zheng, B., Wellenstein, K., Cantley, L.C., and Kahn, B.B., p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake, Cell. Metab., 2012, vol. 16, pp. 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao, S., Kinzig, K.P., Aja, S., Scott, K.A., Keung, W., Kelly, S., Strynadka, K., Chohnan, S., Smith, W.W., Tamashiro, K.L., Ladenheim, E.E., Ronnett, G.V., Tu, Y., Birnbaum, M.J., Lopaschuk, G.D., and Moran, T.H., Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 17358–17363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Su, H., Jiang, L., Carter-Su, C., and Rui, L., Glucose enhances leptin signaling through modulation of AMPK activity, PLoS One, 2012, vol. 7, p. e31636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morris, D.L., Cho, K.W., and Rui, L., Critical role of the Src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice, Endocrinology, 2010, vol. 151, pp. 3643–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C., and Flier, J.S., Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity, J. Clin. Invest., 2000, vol. 105, pp. 1827–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Banks, W.A. and Farrell, C.L., Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible, Am. J. Physiol., 2003, vol. 285, pp. 10–15.

    Google Scholar 

  63. Coppari, R. and Bjorbaek, C., Leptin revisited: its mechanism of action and potential for treating diabetes, Nat. Rev. Drug Discov., 2012, vol. 11, pp. 692–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Belouzard, S., Delcroix, D., and Rouille, Y., Low levels of expression of leptin receptor at the cell surface result from constitutive endocytosis and intracellular retention in the biosynthetic pathway, J. Biol. Chem., 2004, vol. 279, pp. 28499–28508.

    Article  CAS  PubMed  Google Scholar 

  65. Seo, S., Guo, D.F., Bugge, K., Morgan, D.A., Rahmouni, K., and Sheffield, V.C., Requirement of Bardet–Biedl syndrome proteins for leptin receptor signaling, Hum. Mol. Genet., 2009, vol. 18, pp. 1323–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E., and Flier, J.S., Identification of SOCS-3 as a potential mediator of central leptin resistance, Mol. Cell., 1998, vol. 1, pp. 619–625.

    Article  CAS  PubMed  Google Scholar 

  67. Kaszubska, W., Falls, H.D., Schaefer, V.G., Haasch, D., Frost, L., Hessler, P., Kroeger, P.E., White, D.W., Jirousek, M.R., and Trevillyan, J.M., Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line, Mol. Cell. Endocrinol., 2002, vol. 195, pp. 109–118.

    Article  CAS  PubMed  Google Scholar 

  68. Loh, K., Fukushima, A., Zhang, X., Galic, S., Briggs, D., Enriori, P.J., Simonds, S., Wiede, F., Reichenbach, A., Hauser, C., Sims, N.A., Bence, K.K., Zhang, S., Zhang, Z.Y., Kahn, B.B., Neel, B.G., Andrews, Z.B., Cowley, M.A., and Tiganis, T., Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance, Cell. Metab., 2011, vol. 14, pp. 684–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rousso-Noori, L., Knobler, H., Levy-Apter, E., Kuperman, Y., Neufeld-Cohen, A., Keshet, Y., Akepati, V.R., Klinghoffer, R.A., Chen, A., and Elson, A., Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner, Cell. Metab., 2011, vol. 13, pp. 562–572.

    Article  CAS  PubMed  Google Scholar 

  70. Tsou, R.C. and Bence, K.K., Central regulation of metabolism by protein tyrosine phosphatases, Front. Neurosci., 2013, vol. 6, p. 192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dunn, S.L., Björnholm, M., Bates, S.H., Chen, Z., Seifert, M., and Myers, M.G., Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3, Mol. Endocrinol., 2005, vol. 19, pp. 925–938.

    Article  CAS  PubMed  Google Scholar 

  72. Tsou, R.C., Zimmer, D.J., De Jonghe, B.C., and Bence, K.K., Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice, Endocrinology, 2012, vol. 153, pp. 4227–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. St-Pierre, J. and Tremblay, M.L., Modulation of leptin resistance by protein tyrosine phosphatases, Cell. Metab., 2012, vol. 15, pp. 292–297.

    Article  CAS  PubMed  Google Scholar 

  74. Knight, Z.A., Hannan, K.S., Greenberg, M.L., and Friedman, J.M., Hyperleptinemia is required for the development of leptin resistance, PLoS One, 2010, vol. 5, p. e11376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tam, J., Cinar, R., Liu, J., Godlewski, G., Wesley, D., Jourdan, T., Szanda, G., Mukhopadhyay, B., Chedester, L., Liow, J.S., Innis, R.B., Cheng, K., Rice, K.C., Deschamps, J.R., Chorvat, R.J., McElroy, J.F., and Kunos, G., Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance, Cell. Metab., 2012, vol. 16, pp. 167–179.

    Article  CAS  PubMed  Google Scholar 

  76. Ravinet Trillou, C., Arnone, M., Delgorge, C., Gonalons, N., Keane, P., Maffrand, J.P., and Soubrie, P., Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice, Am. J. Physiol., 2003, vol. 284, pp. 345–353.

    Google Scholar 

  77. Milanski, M., Degasperi, G., Coope, A., Morari, J., Denis, R., Cintra, D.E., Tsukumo, D.M., Anhe, G., Amaral, M.E., Takahashi, H.K., Curi, R., Oliveira, H.C., Carvalheira, J.B., Bordin, S., Saad, M.J., and Velloso, L.A., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity, J. Neurosci., 2009, vol. 29, pp. 359–370.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., and Cai, D., Hypothalamic IKKbeta/ NF-kappaB and ER stress link overnutrition to energy imbalance and obesity, Cell, 2008, vol. 135, pp. 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ropelle, E.R., Flores, M.B., Cintra, D.E., Rocha, G.Z., Pauli, J.R., Morari, J., de Souza, C.T., Moraes, J.C., Prada, P.O., Guadagnini, D., Marin, R.M., Oliveira, A.G., Augusto, T.M., Carvalho, H.F., Velloso, L.A., Saad, M.J., and Carvalheira, J.B., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition, PLoS Biol., 2010, vol. 8, pii: e1000465. doi: 10.1371/journal.pbio.1000465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hosoi, T., Sasaki, M., Miyahara, T., Hashimoto, C., Matsuo, S., Yoshii, M., and Ozawa, K., Endoplasmic reticulum stress induces leptin resistance, Mol. Pharmacol., 2008, vol. 74, pp. 1610–1619.

    Article  CAS  PubMed  Google Scholar 

  81. Ozcan, L., Ergin, A.S., Lu, A., Chung, J., Sarkar, S., Nie, D., Myers, M.G., Jr., and Ozcan, U., Endoplasmic reticulum stress plays a central role in development of leptin resistance, Cell. Metab., 2009, vol. 9, pp. 35–51.

    Article  CAS  PubMed  Google Scholar 

  82. Won, J.C., Jang, P.G., Namkoong, C., Koh, E.H., Kim, S.K., Park, J.Y., Lee, K.U., and Kim, M.S., Central administration of an endoplasmic reticulum stress inducer inhibits the anorexigenic effects of leptin and insulin, Obesity (Silver Spring), 2009, vol. 17, pp. 1861–1865.

    Article  CAS  Google Scholar 

  83. Hosoi, T., Yamaguchi, R., Noji, K., Matsuo, S., Baba, S., Toyoda, K., Suezawa, T., Kayano, T., Tanaka, S., and Ozawa, K., Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress, EMBO Mol. Med., 2014, vol. 6, pp. 335–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dardeno, T.A., Chou, S.H., Moon, H.S., Chamberland, J.P., Fiorenza, C.G., and Mantzoros, C.S., Leptin in human physiology and therapeutics, Front. Neuroendocrinol., 2010, vol. 31, pp. 377–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Farooqi, I.S., Jebb, S.A., Langmack, G., Lawrence, E., Cheetham, C.H., Prentice, A.M., Hughes, I.A., McCamish, M.A., and O’Rahilly, S., Effects of recombinant leptin therapy in a child with congenital leptin deficiency, N. Engl. J. Med., 1999, vol. 341, pp. 879–884.

    Article  CAS  PubMed  Google Scholar 

  86. Moon, H.S., Dalamaga, M., Kim, S.Y., Polyzos, S.A., Hamnvik, O.P., Magkos, F., Paruthi, J., and Mantzoros, C.S., Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals, Endocr. Rev., 2013, vol. 34, pp. 377–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Araujo-Vilar, D., Sánchez-Iglesias, S., Guillín-Amarelle, C., Castro, A., Lage, M., Pazos, M., Rial, J.M., Blasco, J., Guillén-Navarro, E., Domingo-Jiménez, R., Del Campo, M.R., González-Méndez, B., and Casanueva, F.F., Recombinant human leptin treatment in genetic lipodystrophic syndromes: the long-term Spanish experience, Endocrine, 2015, vol. 49, pp. 139–147.

    Article  CAS  PubMed  Google Scholar 

  88. Diker-Cohen, T., Cochran, E., Gorden, P., and Brown, R.J., Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin, J. Clin. Endocrinol. Metab., 2015, vol. 100, pp. 1802–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lecoultre, V., Ravussin, E., and Redman, L.M., The fall in leptin concentration is a major determinant of the metabolic adaptation induced by caloric restriction independently of the changes in leptin circadian rhythms, J. Clin. Endocrinol. Metab., 2011, vol. 96, pp. 1512–1516.

    Article  CAS  Google Scholar 

  90. Heymsfield, S.B., Greenberg, A.S., Fujioka, K., Dixon, R.M., Kushner, R., Hunt, T., Lubina, J.A., Patane, J., Self, B., Hunt, P., Lubina, J.A., Patane, J., Self, B., Hunt, P., and McCamish, M., Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial, JAMA, 1999, vol. 282, pp. 1568–1575.

    Article  CAS  PubMed  Google Scholar 

  91. Trevaskis, J.L., Coffey, T., Cole, R., Lei, C., Wittmer, C., Walsh, B., Weyer, C., Koda, J., Baron, A.D., Parkes, D.G., and Roth, J.D., Amylinmediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms, Endocrinology, 2008, vol. 149, pp. 5679–5687.

    Article  CAS  PubMed  Google Scholar 

  92. Müller, T.D., Sullivan, L.M., Habegger, K., Yi, C.-X., Kabra, D., Grant, E., Ottaway, N., Krishna, R., Holland, J., Hembree, J., Perez-Tilve, D., Pfluger, P.T., DeGuzman, M.J., Siladi, M.E., Kraynov, V.S., Axelrod, D.W., DiMarchi, R., Pinkstaff, J.K., and Tschöp, M.H., Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21, J. Pept. Sci., 2012, vol. 18, pp. 383–393.

    Article  PubMed  CAS  Google Scholar 

  93. Clemmensen, C., Chabenne, J., Finan, B., Sullivan, L., Fischer, K., Küchler, D., Sehrer, L., Ograjsek, T., Hofmann, S.M., Schriever, S.C., Pfluger, P.T., Pinkstaff, J., Tschöp, M.H., Dimarchi, R., and Müller, T.D., GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet, Diabetes, 2014, vol. 63, pp. 1422–1427.

    Article  CAS  PubMed  Google Scholar 

  94. Roth, J.D., Roland, B.L., Cole, R.L., Trevaskis, J.L., Weyer, C., Koda, J.E., Anderson, C.M., Parkes, D.G., and Baron, A.D., Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 7257–7262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trevaskis, J.L., Turek, V.F., Griffin, P.S., Wittmer, C., Parkes, D.G., and Roth, J.D., Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin? Physiol. Behav., 2010, vol. 100, pp. 187–195.

    Article  CAS  PubMed  Google Scholar 

  96. Byun, K., Gil, S.Y., Namkoong, C., Youn, B.-S., Huang, H., Shin, M.-S., Kang, G.M., Kim, H.K., Lee, B., Kim, Y.B., and Kim, M.S., Clusterin/ApoJ enhances central leptin signaling through Lrp2-mediated endocytosis, EMBO Rep., 2014, vol. 15, pp. 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cho, H., Protein tyrosine phosphatase 1B (PTP1B) and obesity, Vitam. Horm., 2013, vol. 91, pp. 405–424.

    Article  CAS  PubMed  Google Scholar 

  98. Bhattarai, B.R., Kafle, B., Hwang, J.-S., Ham, S.W., Lee, K.-H., Park, H., Han, I.O., and Cho, H., Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-γ activators, Bioorg. Med. Chem. Lett., 2010, vol. 20, pp. 6758–6763.

    Article  CAS  PubMed  Google Scholar 

  99. Lantz, K.A., Hart, S.G.E., Planey, S.L., Roitman, M.F., Ruiz-White, I.A., Wolfe, H.R., and McLane, M.P., Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice, Obesity (Silver Spring), 2010, vol. 18, pp. 1516–1523.

    Article  CAS  Google Scholar 

  100. Ito, M., Fukuda, S., Sakata, S., Morinaga, H., and Ohta, T., Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1B inhibitor, in diet-induced obesity mice, J. Diabetes Res., 2014, vol. 2014, p. 680348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Barr, V.A., Lane, K., and Taylor, S.I., Subcellular localization and internalization of the four human leptin receptor isoforms, J. Biol. Chem., 1999, vol. 274, pp. 21416–21424.

    Article  CAS  PubMed  Google Scholar 

  102. De Ceuninck, L., Wauman, J., Masschaele, D., Peelman, F., and Tavernier, J., Reciprocal crossregulation between RNF41 and USP8 controls cytokine receptor sorting and processing, J. Cell. Sci., 2013, vol. 126, pp. 3770–3781.

    Article  PubMed  CAS  Google Scholar 

  103. Séron, K., Couturier, C., Belouzard, S., Bacart, J., Monté, D., Corset, L., Bocquet, O., Dam, J., Vauthier, V., Lecoeur, C., Bailleul, B., Hoflack, B., Froguel, P., Jockers, R., and Rouillé, Y., Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway, J. Biol. Chem., 2011, vol. 286, pp. 17968–17981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Vauthier, V., Swartz, T.D., Chen, P., Roujeau, C., Pagnon, M., Mallet, J., Sarkis, C., Jockers, R., and Dam, J., Endospanin 1 silencing in the hypothalamic arcuate nucleus contributes to sustained weight loss of high fat diet obese mice, Gene Ther., 2014, vol. 21, pp. 638–644.

    Article  CAS  PubMed  Google Scholar 

  105. Signore, A.P., Zhang, F., Wengl, Z., Gao, Y.Q., and Chen, J., Leptin neuroprotection in the central nervous system: mechanisms and therapeutic potentials, J. Neurochem., 2008, vol. 106, pp. 1977–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Williams, K.W., Scott, M.M., and Elmquist, J.K., Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network, Eur. J. Pharmacol., 2011, vol. 660, pp. 2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Morton, G.J. and Schwartz, M.W., Leptin and the central nervous system control of glucose metabolism, Physiol. Rev., 2011, vol. 91, pp. 389–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Amitani, M., Asakawa, A., Amitani, H., and Inui, A., The role of leptin in the control of insulinglucose axis, Front. Neurosci., 2013, vol. 7, p. 51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Toda, C., Shiuchi, T., Lee, S., Yamato-Esaki, M., Fujino, Y., Suzuki, A., Okamoto, S., and Minokoshi, Y., Distinct effects of leptin and a melanocortin receptor agonist injected into medial hypothalamic nuclei on glucose uptake in peripheral tissues, Diabetes, 2009, vol. 58, pp. 2757–2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, X., Wu, X., Camacho, R., Schwartz, G.J., and LeRoith, D., Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms, PLoS One, 2011, vol. 6, p. e17058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, X.L., Aou, S., Oomura, Y., Hori, N., Fukunaga, K., and Hori, T., Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents, Neurosci., 2002, vol. 113, pp. 607–615.

    Article  CAS  Google Scholar 

  112. Ramos-Rodriguez, J.J., Molina-Gil, S., Ortiz-Barajas, O., Jimenez-Palomares, M., Perdomo, G., Cozar-Castellano, I., Lechuga-Sancho, A.M., and Garcia-Alloza, M., Central proliferation and neurogenesis is impaired in type 2 diabetes and prediabetes animal models, PLoS One, 2014, vol. 9, p. e89229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Oomura, Y., Aou, S., and Fukunaga, K., Prandial increase of leptin in the brain activates spatial learning and memory, Pathophysiology, 2010, vol. 17, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  114. Weng, Z., Signore, A.P., Gao, Y., Wang, S., Zhang, F., Hastings, T., Yin, X.M., and Chen, J., Leptin protects against 6-hydroxydopamineinduced dopaminergic cell death via mitogenactivated protein kinase signaling, J. Biol. Chem., 2007, vol. 282, pp. 34479–34491.

    Article  CAS  PubMed  Google Scholar 

  115. Roseberry, A.G., Painter, T., Mark, G.P., and Williams, J.T., Decreased vesicular somatodendritic dopamine stores in leptin-deficient mice, J. Neurosci., 2007, vol. 27, pp. 7021–7027.

    Article  CAS  PubMed  Google Scholar 

  116. Etemad, A., Ramachandran, V., Pishva, S.R., Heidari, F., Aziz, A.F., Yusof, A.K., Pei, C.P., and Ismail, P., Analysis of Gln223Agr polymorphism of leptin receptor gene in type II diabetic mellitus subjects among Malaysians, Int. J. Mol. Sci., 2013, vol. 14, pp. 19230–19244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nazarians-Armavil, A., Menchella, J.A., and Belsham, D.D., Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription, Mol. Endocrinol., 2013, vol. 27, pp. 990–1003.

    Article  CAS  PubMed  Google Scholar 

  118. Wang, B., Chandrasekera, P.C., and Pippin, J.J., Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes, Curr. Diabetes Rev., 2014, vol. 10, pp. 131–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, M.Y., Chen, L., Clark, G.O., Lee, Y., Stevens, R.D., Ilkayeva, O.R., Wenner, B.R., Bain, J.R., Charron, M.J., Newgard, C.B., and Unger, R.H., Leptin therapy in insulin-deficient type I diabetes, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 4813–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Meek, T.H., Matsen, M.E., Damian, V., Cubelo, A., Chua, S.C., Jr., and Morton, G.J., Role of melanocortin signaling in neuroendocrine and metabolic actions of leptin in male rats with uncontrolled diabetes, Endocrinology, 2014, vol. 155, pp. 4157–4167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Khan, S.M., Hamnvik, O.P., Brinkoetter, M., and Mantzoros, C.S., Leptin as a modulator of neuroendocrine function in humans, Yonsei Med. J., 2012, vol. 53, pp. 671–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim, M.S., Small, C.J., Stanley, S.A., Morgan, D.G., Seal, L.J., Kong, W.M., Edwards, C.M., Abusnana, S., Sunter, D., Ghatei, M.A., and Bloom, S.R., The central melanocortin system affects the hypothalamo–pituitary thyroid axis and may mediate the effect of leptin, J. Clin. Invest., 2000, vol. 105, pp. 1005–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mantzoros, C.S., Ozata, M., Negrao, A.B., Suchard, M.A., Ziotopoulou, M., Caglayan, S., Elashoff, R.M., Cogswell, R.J., Negro, P., Liberty, V., Wong, M.L., Veldhuis, J., Ozdemir, I.C., Gold, P.W., Flier, J.S., and Licinio, J., Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptindeficient subjects: evidence for possible partial TSH regulation by leptin in humans, J. Clin. Endocrinol. Metab., 2001, vol. 86, pp. 3284–3291.

    Article  CAS  PubMed  Google Scholar 

  124. Chen, R., Mick, G.J., Xu, R., Zheng, D., Fan, Y., Lin, X., and McCormick, K.L., Effect of central antileptin antibody on the onset of female rat puberty, Int. J. Pediatr. Endocrinol., 2009, vol. 2009, p. 194807.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mantzoros, C.S., Flier, J.S., and Rogol, A.D., A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty, J. Clin. Endocrinol. Metab., 1997, vol. 82, pp. 1066–1070.

    CAS  PubMed  Google Scholar 

  126. Quennell, J.H., Mulligan, A.C., Tups, A., Liu, X., Phipps, S.J., Kemp, C.J., Herbison, A.E., Grattan, D.R., and Anderson, G.M., Leptin indirectly regulates gonadotropin-releasing hormone neuronal function, Endocrinology, 2009, vol. 150, pp. 2805–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Smith, J.T., Acohido, B.V., Clifton, D.K., and Steiner, R.A., KiSS-1 neurones are direct targets for leptin in the ob/ob mouse, J. Neuroendocrinol., 2006, vol. 18, pp. 298–303.

    Article  CAS  PubMed  Google Scholar 

  128. Louis, G.W., Greenwald-Yarnell, M., Phillips, R., Coolen, L.M., Lehman, M.N., and Myers, M.G., Jr., Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis, Endocrinology, 2011, vol. 152, pp. 2302–2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsuzaki, T., Iwasa, T., Kinouchi, R., Yoshida, S., Murakami, M., Gereltsetseg, G., Yamamoto, S., Kuwahara, A., Yasui, T., and Irahara, M., Fasting reduces the kiss1 mRNA levels in the caudal hypothalamus of gonadally intact adult female rats, Endocr. J., 2011, vol. 58, pp. 1003–1012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © A.O. Shpakov, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 3, pp. 161—176.

An erratum to this article is available at http://dx.doi.org/10.1134/S123456781605013X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakov, A.O. The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus. J Evol Biochem Phys 52, 177–195 (2016). https://doi.org/10.1134/S0022093016030017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016030017

Key words

Navigation