Skip to main content
Log in

Effect of heart electric stimulation on repolarization of ventricular myocardium of fish and amphibians

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The distributions of repolarization durations and end of repolarization time were studied on the ventricular epicardium in pikes (Esox lucius) and frogs (Rana esculenta) and in the ventricular intramural layers in toads (Bufo bufo) at the ectopic heart excitation by using method of the synchronous multielectrode cartography (24 unipolar leads). The time of arrival of the excitation wave and the end of repolarization in each lead were determined from the minimum of time derivative of potential at the period of QRS complex and by minimum of T wave, respectively. It has been established that at the ventricle electrostimulation, alongside with deceleration and a change of sequence of myocardium activation, the redistribution occurs of the local durations of repolarization, being longer than in zones of early activation (p < 0.05). At stimulation, the apicobasal gradient of repolarization is predominantly changed due to electrophysiological processes in the apical areas. In all the studied species, at the ectopic excitation of the heart the sequence of its repolarization repeats the depolarization sequence due to a delay of activation (in fish) and redistribution of repolarization durations (in amphibians).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian, E. and Scher, A.M., The Effect of Ventricular Depolarization on the Sequence of Ventricular Repolarization, Am. Heart J., 1967, vol. 74, no. 4, pp. 530–535.

    Article  PubMed  CAS  Google Scholar 

  2. Noble, D. and Cohen, I., The Interpretation of the T Wave of the Electrocardiogram, Cardiovasc. Res., 1978, vol. 12, no. 1, pp. 13–27.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng, Y., Nikolski, V., and Efimov, I.R., Reversal of Repolarization Gradient Does Not Reverse the Chirality of Shock-Induced Reentry in the Rabbit Heart, J. Cardiovasc. Electrophysiol., 2000, vol. 11, no. 9, pp. 998–1007.

    Article  PubMed  CAS  Google Scholar 

  4. Efimov, I.R., Ermentrout, B., Huang, D.T., and Salama, G., Activation and Repolarization Patterns Are Governed by Different Structural Characteristics of Ventricular Myocardium: Experimental Study with Voltage-Sensitive Dyes and Numerical Simulations, J. Cardiovasc. Electrophysiol., 1996, vol. 7, no. 6, pp. 512–530.

    Article  PubMed  CAS  Google Scholar 

  5. Shmakov, D.N. and Roshchevsky, M.P., Aktivatsiya miokarda (Activation of Myocardium), Syktyvkar, 1997.

    Google Scholar 

  6. Osaka, T., Kodama, I., Tsuboi, N., Toyama, J., and Yamada, K., Effect of Activation Sequence and Anisotropic Cellular Geometry on the Repolarization Phase of Action Potential of Dog Ventricular Muscles, Circulation, 1987, vol. 76, no. 1, pp. 226–236.

    Article  PubMed  CAS  Google Scholar 

  7. Burgess, M.J., Steinhaus, B.M., Spitzer, K.W., and Ershler, P.R., Nonuniform Epicardial Activation and Repolarization Properties of in vivo Canine Pulmonary Conus, Circ. Res., 1988, vol. 62, no. 2, pp. 233–246.

    Article  PubMed  CAS  Google Scholar 

  8. Zubair, I., Pollard, A.E., Spitzer, K.W., and Burgess, M.J., Effects of Activation Sequence on the Spatial Distribution of Repolarization Properties, J. Electrocardiol., 1994, vol. 27, no. 2, pp. 115–127.

    Article  PubMed  CAS  Google Scholar 

  9. Joyner, R.W., Modulation of Repolarization by Electrotonic Interactions, Jpn. Heart J., 1986, vol. 27,Suppl. 1, pp. 167–183.

    PubMed  Google Scholar 

  10. Solovyova, O., Katsnelson, L.B., Konovalov, P., Lookin, O., Moskvin, A.S., Protsenko, Y.L., Vikulova, N., Kohl, P., and Markhasin, V.S., Activation Sequence as a Key Factor in Spatio-Temporal Optimization of Myocardial Function, Philos. Transact. A. Math. Phys. Eng. Sci., 2006, vol. 364, no. 1843, pp. 1367–1383.

    Article  PubMed  CAS  Google Scholar 

  11. Millar, C.K., Kralios, F.A., and Lux, R.L., Correlation between Refractory Periods and Activation-Recovery Intervals from Electrograms: Effects of Rate and Adrenergic Interventions, Circulation, 1985, vol. 72, no. 6, pp. 1372–1379.

    Article  PubMed  CAS  Google Scholar 

  12. Haws, C.W. and Lux, R.L., Correlation between in vivo Transmembrane Action Potential Durations and Activation-Recovery Intervals from Electrograms. Effects of Interventions That Alter Repolarization Time, Circulation, 1990, vol. 81, no. 1, pp. 281–288.

    Article  PubMed  CAS  Google Scholar 

  13. Potse, M., Vinet, A., Opthof, T., and Coronel, R., Validation of a Simple Model for the Morphology of the T Wave in Unipolar Electrograms, Am. J. Physiol. Heart Circ. Physiol., 2009, vol. 297, no. 2, pp. H792–H801.

    Article  PubMed  CAS  Google Scholar 

  14. Shmakov, D.N. and Roshchevsky, M.P., The Chronotopography of Excitation of Heart Ventricle in Bony Fish, Zh. Evol. Biokhim. Fiziol., 1982a, vol. 18, no. 1, pp. 53–58.

    Google Scholar 

  15. Shmakov, D.N. and Abrosimova, G.V., The Process of Depolarization of Heart Ventricle and Development of Electrocardiographic Complex QRS in Frog, Fiziol. Zh. SSSR, 1989, vol. 75, no. 8, pp. 1116–1120.

    PubMed  CAS  Google Scholar 

  16. Azarov, J.E., Shmakov, D.N., Vityazev, V.A., Roshchevskaya, I.M., and Roshchevsky, M.P., Activation and Repolarization Patterns in the Ventricular Epicardium under Sinus Rhythm in Frog and Rabbit Hearts, Comp. Biochem. Physiol. A Mol. Integr., Physiol., 2007, vol. 146, no. 3, pp.310-316.

    Google Scholar 

  17. Vaykshnorayte, M.A., Tsvetkova, A.S., Vityazev, V.A., Azarov, J.E., and Shmakov, D.N., The Sequence of Repolarization of Ventricular Myocardium in Pikes, I.M. Sechenov Ross. Fiziol. Zh., 2009, vol. 95, no. 2, pp. 116–122.

    Google Scholar 

  18. Vaykshnorayte, M.A., Azarov, J.E., Tsvetkova, A.S., Vityazev, V.A., Ovechkin, A.O., and Shmakov, D.N., The Contribution of Ventricular Apicobasal and Transmural Repolarization Patterns to the Development of the T Wave Body Surface Potentials in Frogs (Rana temporaria) and Pike (Esox lucius), Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2011, vol. 159, no. 1, pp. 39–45.

    Article  PubMed  Google Scholar 

  19. Sedmera, D., Reckova, M., deAlmeida, A., Sedmerova, M., Biermann, M., Volejnik, J., Sarre, A., Raddatz, E., McCarthy, R.A., Gourdie, R.G., and Thompson, R.P., Functional and Morphological Evidence for a Ventricular Conduction System in Zebrafish and Xenopus Hearts, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, no. 4, pp. H1152–H1160.

    PubMed  CAS  Google Scholar 

  20. Toyoshima, H. and Burgess, M.J., Electrotonic Interaction during Canine Ventricular Repolarization, Circ. Res., 1978, vol. 43, no. 3, pp. 348–356.

    Article  PubMed  CAS  Google Scholar 

  21. Gottwald, E., Gottwald, M., and Dhein, S., Enhanced Dispersion of Epicardial Activation-Recovery Intervals at Sites of Histological Inhomogeneity during Regional Cardiac Ischaemia and Reperfusion, Heart, 1998, vol. 79, no. 5, pp. 474–480.

    PubMed  CAS  Google Scholar 

  22. Laurita, K.R., Girouard, S.D., Rudy, Y., and Rosenbaum, D.S., Role of Passive Electrical Properties during Action Potential Restitution in Intact Heart, Am. J. Physiol., 1997, vol. 273, no. 3, pp. H1205–H1214.

    PubMed  CAS  Google Scholar 

  23. Lab, M.J., Allen, D.G., and Orchard, C.H., The Effects of Shortening on Myoplasmic Calcium Concentration and on the Action Potential in Mammalian Ventricular Muscle, Circ. Res., 1984, vol. 55, no. 6, pp. 825–829.

    Article  PubMed  CAS  Google Scholar 

  24. Wan, X., Bryant, S.M., and Hart, G.A., Topographical Study of Mechanical and Electrical Properties of Single Myocytes Isolated from Normal Guinea-pig Ventricular Muscle, J. Anat., 2003, vol. 202, no. 6, pp. 525–536.

    Article  PubMed  CAS  Google Scholar 

  25. Cordeiro, J.M., Greene, L., Heilmann, C., Antzelevitch, D., and Antzelevitch, C., Transmural Heterogeneity of Calcium Activity and Mechanical Function in the Canine Left Ventricle, Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 286, no. 4, pp. H1471–H1479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Azarov.

Additional information

Original Russian Text © J.E. Azarov, N.A. Kibler, M.A. Vaykshnorayte, A.S. Tsvetkova, S.N. Kharin, V.A. Vityazev, D.N. Shmakov, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 2, pp. 128–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarov, J.E., Kibler, N.A., Vaykshnorayte, M.A. et al. Effect of heart electric stimulation on repolarization of ventricular myocardium of fish and amphibians. J Evol Biochem Phys 49, 165–174 (2013). https://doi.org/10.1134/S0022093013020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013020059

Key words

Navigation