Skip to main content
Log in

Study of protective effects of exogenous heat shock protein 70 kDa in model of sleep deprivation in pigeon Columba livia

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Electroencephalographic methods were used to study effects of preparation of the exogenous heat shock protein with molecular mass of 70 kDa (Hsp70i/Hsc70) on time characteristics of sleep and wakefulness, brain temperature, peripheral vasomotor reactions, and thoracic muscle contractile activity after the 5-hour forceful sleep deprivation in the pigeon Columba livia. Administration of Hsp70i/Hsc70 into the third brain ventricle at once after the end of sleep deprivation eliminated disturbances in the sleep-wakefulness cycle organization and decreased the thoracic muscle contractile activity and the brain temperature as early as for the first hour of postdeprivation period. For the subsequent hours, the Hsp70i/Hsc70 action was characterized by an increase of the total time of deep sleep and a decrease of the total time of the rapid eye movement sleep. We suggest that the protective effects of the exogenous Hsp70i/Hsc70 preparation are associated with its ability to decrease activity of the hypothalamo-pituitary-adrenal axis and to enhance the stress-limiting function of the slow eye movement sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, M.L., Martins, P.J., D’Almeida, V., et al., Endocrinological and Catecholaminergic Alterations during Sleep Deprivation and Recovery in Male Rats, J. Sleep Res., 2005, vol. 14, no. 1, pp. 83–90.

    Article  PubMed  Google Scholar 

  2. Rattenborg, N.C., Martinez-Gonzalez, D., and Lesku, J.A., Avian Sleep Homeostasis: Convergent Evolution of Complex Brains, Cognition and Sleep Functions in Mammals and Birds, Neurosci. Biobehav. Rev., 2009, vol. 33, pp. 253–270.

    Article  PubMed  Google Scholar 

  3. Lapshina, K.V. and Ekimova, I.V., Effect of Sleep Deprivation on Parameters of Fever Reaction and Process of Recovery of Somatovisceral Functions and Sleep under Conditions of Endotoxemia, Ross. Fiziol. Zh., 2009, vol. 9, pp. 161–171.

    Google Scholar 

  4. Mankovskaya, T.N. and Pastukhov, Yu.F., Effect of the Stress and Heat Shock Protein on the Corticosterone Content in Blood Plasma in Rats, Stress i vistseral’nye sistemy (Stress and Visceral Systems), Minsk, 2005, pp. 96–99.

  5. Alvarez, G.G. and Ayas, N.T., The Impact of Daily Sleep Duration on Health: a Review of the Literature, Prog. Cardiovasc. Nurs., 2004, vol. 19, no. 2, pp. 56–59.

    Article  PubMed  Google Scholar 

  6. Wulff, K., Porcheret, K., Cussans, E., and Foster, R.G., Sleep and Circadian Rhythm Disturbances: Multiple Genes and Multiple Phenotypes, Curr. Opin. Genet. Dev., 2009, vol. 19, pp. 237–246

    Article  CAS  PubMed  Google Scholar 

  7. Kovrov, G.V. and Vorob’eva, O.V., Sleep Disturbance: from Complaints to Diagnosis and Treatment, Ross. Med. Zh., 2006, vol., 14, pp. 439–444.

    Google Scholar 

  8. Pastukhov, Yu.F. and Ekimova, I.V., Molecular, Cellular, and Systemic Mechanisms of Protective Function of the Heat Shock Protein 70 kDa, Neironauki, 2005, vol. 2, no. 2, pp. 3–25.

    Google Scholar 

  9. Margulis, B.A. and Guzhova, I.V., Stress Proteins in the Eukaryotic Cell, Tsitologiya, 2000, vol. 42, pp. 323–339.

    CAS  Google Scholar 

  10. Hunt, C. and Morimoto, R.I., Conserved Features of Eukaryotic hsp70 Genes Revealed by Comparison with the Nucleotide Sequence of Human Hsp70, Proc. Nat. Acad. Sci., 1985, vol. 82, pp. 6455–6459.

    Article  CAS  PubMed  Google Scholar 

  11. Chow, K.C., Hsp70 (DnaK)-Evolution Facilitator?, Trends. Genet., 2000, vol. 16, no. 11, pp. 484–485.

    Article  CAS  PubMed  Google Scholar 

  12. Shaw, P.J., Tononi, G., Greenspan, R.J., and Robinson, D.F., Stress Response Genes Protect against Lethal Effects of Sleep Deprivation in Drosophila, Nature, 2002, vol. 417, no. 6886, pp. 287–291.

    Article  CAS  PubMed  Google Scholar 

  13. Terao, A., Steininger, T.L., Hyder, K., et al., Differential Increase in the Expression of Heat Shock Protein Family Members during Sleep Deprivation and during Sleep, Neurosci., 2003, vol. 116, no. 1, pp. 187–200.

    Article  CAS  Google Scholar 

  14. Naidoo, N., Giang, W., Galante, R.J., and Pack, A.I., Sleep Deprivation Induces the Unfolded Protein Response in Mouse Cerebral Cortex, J. Neurochem., 2005, vol. 92, pp. 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  15. Jones, S., Pfister-Genskow, M., Cirelli, C., and Benca, R.M., Changes in Brain Gene Expression during Migration in the White-Crowned Sparrow, Brain. Res. Bull., 2008, vol. 76, pp. 536–544.

    Article  CAS  PubMed  Google Scholar 

  16. Nitsinskaya, L.E., Khudik, K.A., and Pastukhov, Yu.F., Effect of the Heat Preconditioning on Convulsive Activity on Different Models of Experimental Epilepsy in Rats, Mediko-bio logicheskie aspekty deistviya fizicheskikh faktorov (Medicobiological Aspects of Action of Physical Factors), Minsk, 2006, pp. 181–184

  17. Pastukhov, Yu.F., Ekimova, I.V., Khudik, K.A., and Guzhova, I.V., The Lipopolysaccharide-Free Heat Shock Protein 70 kDa Has Hypothermic and Somnogenic Action, Dokl. RAN, 2004, vol. 402, pp. 275–278.

    Google Scholar 

  18. Guzhova, I.V., Kislyakova, K.A., Moskaliova, O.S., et al., In vitro Studies Show that Hsp70 can be Released by Glia and That Exogenous Hsp70 Can Enhance Neuronal Stress Tolerance, Brain. Res., 2001, vol. 914, pp. 66–73.

    Article  CAS  PubMed  Google Scholar 

  19. Meerlo, P., Koehl, M., van der Borght, K., and Turek, F.W., Sleep Restriction Alters the Hypothalamic-Pituitary-Adrenal Response to Stress, J. Neuroendocrinol., 2002, vol. 14, pp. 397–402.

    Article  CAS  PubMed  Google Scholar 

  20. Pastukhov, Yu.F. and Khaskin, V.V., Adrenergic Control of the Thermogenesis at the Experimental and Natural Adaptation of Animals to Cold, Usp. Fiziol. Nauk, 1979, vol. 10, no. 3, pp. 121–142.

    CAS  PubMed  Google Scholar 

  21. Vazquez-Palacios, G., Retana-Marquez, S., Bonilla-Jaime, H., and Velazquez-Moctezuma, J., Further Definition of the Effect of Corticosterone on the Sleep-Wake Pattern in the Male Rat, Pharmacol. Biochem. Behav., 2001, vol. 70, pp. 305–310.

    Article  CAS  PubMed  Google Scholar 

  22. Bodosi, B., Gardi, J., Hajdu, I., et al., Rhythms of Ghrelin, Leptin, and Sleep in Rats: Effects of the Normal Diurnal Cycle, Restricted Feeding, and Sleep Deprivation, Am. J. Physiol., Regul. Integr. Comp. Physiol., 2004, vol. 287, pp. 1071–1079.

    Google Scholar 

  23. Baracchi, F. and Opp, M.R., Sleep-Wake Behavior and Responses to Sleep Deprivation of Mice Lacking both Interleukin-1 Beta Receptor 1 and Tumor Necrosis Factor-Alpha Receptor 1, Brain Behav. Immun., 2008, vol. 22, pp. 982–993.

    Article  CAS  PubMed  Google Scholar 

  24. Imeri, L. and Opp, M.R., How (and Why) the Immune System Makes us Sleep, Nat. Rev. Neurosci., 2009, vol. 10, no. 3, pp. 199–210.

    Article  CAS  PubMed  Google Scholar 

  25. Weinhouse, G.L. and Schwab, R.J., Sleep in the Critically Ill Patient, Sleep, 2006, vol. 29, pp. 707–716.

    PubMed  Google Scholar 

  26. Martinez-Gonzalez, D., Lesku, J.A., and Rattenborg, N.C., Increased EEG Spectral Power Densi ty during Sleep Following Short-Term Sleep Deprivation in Pigeons (Columba livia): Evidence for Avian Sleep Homeostasis, J. Sleep Res., 2008, vol. 2, pp. 140–153.

    Article  Google Scholar 

  27. Sedunova, E.V., Temperature Homeostasis and its Regulation in Avian Class, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 129–140.

    Google Scholar 

  28. Ekimova, I.V. and Pastukhov, Yu.F., Participation of GABAergic Mechanisms of Hypothalamus Ventrolateral Preoptic Area in Regulation of the Sleep-Wakefulness States and of Temperature Homeostasis in the Pigeon Columba livia, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, pp. 356–363.

    CAS  PubMed  Google Scholar 

  29. Pastukhov, Yu.F., Ekimova, I.V., Khudik, K.A., and Guzhova, I.V., Heat Shock Protein 70 kDa in Control of Sleep and Thermoregulation, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 65–71.

    PubMed  Google Scholar 

  30. Tononi, G., Slow Wave Homeostasis and Synaptic Plasticity, J. Clin. Sleep Med., 2009, vol.5, no. 2, pp. 16–19.

    Google Scholar 

  31. Kelty, J.D., Noseworthy, P.A., Feder, M.E., et al., Thermal Preconditioning and Heat-Shock Protein 72 Preserve Synaptic Transmission during Thermal Stress, J. Neurosci., 2002, vol. 22, no. 1, p. 193.

    Google Scholar 

  32. Gusel’nikova, E.A. and Pastukhov, Y F., Micro injection of 70 kDa Heat Shock Protein into the Oral Reticular Nucleus of the Pons Suppresses Rapid Eye Movement Sleep in Pigeons, Neurosci. Behav. Physiol., 2009, vol. 39, pp. 289–296.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K. V. Lapshina, I. V. Ekimova, 2010, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2010, Vol. 46, No. 5, pp. 387–394.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshina, K.V., Ekimova, I.V. Study of protective effects of exogenous heat shock protein 70 kDa in model of sleep deprivation in pigeon Columba livia . J Evol Biochem Phys 46, 461–470 (2010). https://doi.org/10.1134/S0022093010050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093010050051

Key words

Navigation