Skip to main content
Log in

Slow-wave sleep and molecular chaperones

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

The function of sleep …is yet to be discovered. When it is discovered, …a huge hole in biological knowledge will be filled [Rechtschaffen, 1998].

Abstract

Since long ago, one of the most vital issues mankind is concerned about is why spending almost one-third of human lives for sleep. This review addresses the major function of slow-wave sleep (SWS) and molecular mechanisms of its regulation. The main conclusions are presented below as the following generalizations and hypotheses. 1. SWS performs an energy-conserving function which developed parallel to the evolution of tachimetabolism and endothermy/homoiothermy. 2. Most significant reduction in the brain energy demands during deep SWS, characterized by increased EEG delta power, creates optimal conditions for the enhancement of anabolic processes and actualization of the major biological function of sleep—accelerating protein synthesis in the brain. 3. Conditions of paradoxical sleep (PS) as an “archeowakefulness”, containing the elements of endogenous stress, seem acceptable for chaperone expression required to fix misfolded proteins synthesized de novo during deep SWS. 4. Close integration of the HSP70 and HSP40 molecular systems, contained in the sleep center of the preoptic area of the hypothalamus, and their compensatory interrelationship contribute significantly to the maintenance of sleep homeostasis and implementation of its functions under non-stress conditions and during a long-term chaperone deficiency intrinsic to ageing and varied neuropathologies. 5. Cyclic changes in the protein synthesis rate (during deep SWS) and HSP70 chaperone expression (during wakefulness and, probably, PS), which occur on a daily basis throughout the entire lifetime, are critical for all vital functions of homeothermic organisms, including recovery of the nervous system structure and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rechtschaffen, A., Current perspectives on the function of sleep, Perspect. Biol. Med., 1998, vol. 41, no. 2, pp. 359–390.

    Article  CAS  PubMed  Google Scholar 

  2. Kleitman, N., Sleep and wakefulness (2nd Edition), Chicago, 1963, p. 94.

    Google Scholar 

  3. Pastukhov, Yu.F., Neurochemical and molecular mechanisms of sleep, Proc. of the 3th Intern. Workshop “Sleep: a window to the world of wakefulness”, Rostov-na-Donu, Russia, 2005, p. 75.

    Google Scholar 

  4. Pastukhov, Yu.F., Paradixical sleep and brain temperature: interrelationship during euthermic (“normothermic”) and hypometabolic seasons in hibernation ground squirrels Citellus major, Zh. Evol. Fiziol. Biokh., 1999, vol. 35, no. 3, pp. 237–243.

    Google Scholar 

  5. Pastukhov, Yu.F., Maksimov, A.L., and Khaskin, V.V., Adaptatsiya k kholodu i usloviyam Subarktiki: problem termofiziologii (Adaptation to Cold and Subarctic Conditions: Problems of Thermophysiology), Magadan, 2003, vol. 1, p. 373.

    Google Scholar 

  6. Borbely, A., Taina sna (Secrets of Sleep), Moscow, 1989.

    Google Scholar 

  7. Vein, A.M., Son—tainy i paradoksy (Sleep: Secrets and Paradoxes), Moscow, 2003.

    Google Scholar 

  8. Kovalzon, V.M., Osnovy somnologii: fiziologiya i neirokhimiya tsikla “bodrstvovanie–son” (Basics of Somnology: Physiology and Neurochemistry of the Cycle “Wake–Sleep”), Moscow, 2011.

    Google Scholar 

  9. Pastukhov, Yu.F., Changes in paradoxical sleep characteristics—the early sign of Parkinson’s Disease, Zh. Vyssh. Nervn. Deyat., 2013, vol. 63, no. 1, pp. 75–85.

  10. Pastukhov, Yu.F., Ekimova, I.V., and Chesnokova, A.V., Molecular pathogenetic mechanisms of Parkinson’s disease and prospects for preventive therapy, Neirodegenerativnye zabolevaniya— ot genoma do tselostnogo organizma. I. Motornaya funktsiya i ee regulyatsiya v norme i pri patologii (Neurodegenrative Diseases—from Genome to Holistic Organism. I. Motor Function and its Regulation Under Norm and Pathology), Moscow, 2014, vol. 1, pp. 316–356.

    Google Scholar 

  11. Zisapel, N., Sleep and sleep disturbances: biological basis and clinical implications, Cell. Life Sci., 2007, vol. 64, no. 10, pp. 1174–1186.

    Article  CAS  Google Scholar 

  12. Wulff, K., Porcheret, K., Cussans, E., and Foster, R.F., Sleep and circadian rhythm disturbances: multiple genes and multiple phenotypes, Current Opinion in Genetics and Development, 2009, vol. 19, pp. 237–246.

    Article  CAS  PubMed  Google Scholar 

  13. Ekimova, I.V. and Pastukhov, Yu.F., Involvement of GABAergic mechanisms of the hypothalamic ventrolateral preoptic area in regulation of sleep–wake states and temperature homeostasis in the pigeon Columba livia, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 4, pp. 356–363.

    CAS  PubMed  Google Scholar 

  14. Kovalzon, V.M., Pastukhov, Yu.F., and Mukhametov, L.M., Mekhanizmy sna, Fiziologiya cheloveka i zhivotnykh (Mechanisms of Sleep, Human and Animal Physiology), Moscow, 1986.

    Google Scholar 

  15. Komarova, T.G., Ekimova, T.V., and Pastukhov, Yu.F., Involvement of muscarinic and nicotinic cholinoreseptors of the hypothalamic preoptic area in control of thermoregulation and sleep–wake states in the pigeon Columba livia, Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, no. 4, pp. 332–336.

    CAS  PubMed  Google Scholar 

  16. Obal, F. and Krüger, J.M., Biochemical regulation of non-rapid-eye-movement sleep, Front Biosci., 2003, vol. 8, pp. d520–d550.

    Article  CAS  PubMed  Google Scholar 

  17. Stenberg, D., Neuroanatomy and neurochemistry of sleep, Cell. Mol. Life Sci., 2007, vol. 64, no. 10, pp. 1187–1204.

    Article  CAS  PubMed  Google Scholar 

  18. Lesku, J.A., Martinez-Gonzales, D., and Rattenborg, N.C., Phylogeny and ontogeny of sleep, The Neuroscience of Sleep, San Diego, 2009, pp. 61–70.

    Google Scholar 

  19. Zepelin, H., Siegel, J.M., and Tobler, I., Mammalian sleep, Principles and Practice of Sleep Medicine, Philadelphia, 2005, pp. 91–100.

    Book  Google Scholar 

  20. Pastukhov, Yu.F., Classification of organisms based on the thermoregulation type. Evolution of Concepts, Termofiziologiya, Informatsionnyi Byull., Minsk, 1994, iss. 3, pp. 6–17.

    Google Scholar 

  21. Bennett, A.F and Ruben, J.A., Endothermy and activity in vertebrates, Science, 1979, vol. 206, pp. 649–654.

    Article  CAS  PubMed  Google Scholar 

  22. Dawson, T.J., “Primitive mammals”, Comparative Physiology of Thermoregulation, Whittow, G.C., Ed., vol. 3, L46, New York, 1973, pp. 1–46.

    Chapter  Google Scholar 

  23. Pastukhov, Yu.F. and Ekimova, I.V., Thermophysiology of paradoxical sleep, Ross. Fiziol. Zh. im. I.M. Sechenova, 2011, vol. 97, no. 4, pp. 351–373.

    PubMed  Google Scholar 

  24. Rashotte, M.E., Pastukhov, Iu.F., Poliakov, E.L., and Henderson, R.P., Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columba livia), Am. J. Physiol., 1998, vol. 275 (Regulatory Integrative Comp. Physiol.), no. 44, pp. R1690–R1702.

  25. Berger, R.J. and Phillips, N.H., Energy conservation and sleep, Behav. Brain Res., 1995, vol. 69, nos. 1–2, pp. 65–73.

    Article  CAS  PubMed  Google Scholar 

  26. Heller, H., Temperature, thermoregulation, and sleep, Principles and Practice of Sleep Medicine, 2005, Philadelphia, pp. 292–304.

    Book  Google Scholar 

  27. Sazonov, V.S. and Pastukhov, Yu.F., Diurnal organization of the sleep–wake cycle and energy metabolism in rats under exposure of low temperatures, Fiziol. Zh. im. I.M. Sechenova, 1986, vol. 71, no. 3, pp. 342–347.

    Google Scholar 

  28. Zepelin, H. and Rechtschaffen, A., Mammalian sleep, longevity, and energy metabolism, Brain Behav. Evol., 1974, vol. 10, pp. 425–470.

    Article  CAS  PubMed  Google Scholar 

  29. Pastukhov, Yu.F. and Nevretdinova, Z.G., Changes in thermoregulation, sleep and thyroid hormone concentration during the “critical” period of entering hibernation in the ground squirrel Citellus parryi, Zh. Evol. Biokhim. Fiziol., 1991, vol. 27, no. 2, pp. 211–217.

    CAS  PubMed  Google Scholar 

  30. Aristakesyan, E.A. and Karmanova, I.G., Some examples of recapitulation of phylogenetic stages of the sleep–wake cycle formation during mammalian ontogenesis, Zh. Evol. Biokhim. Fiziol., 1998, vol. 34, no. 4, pp. 491–500.

    Google Scholar 

  31. Karmanova, I.G. and Oganesyan, G.A., Fiziologiya i patologiya tsikla bodrstvovanie–son. Evolyutsionnye aspekty (Physiology and Pathology of Sleep–Wake Cycle. Evolutionary Aspects), St. Petersburg, 1994.

    Google Scholar 

  32. Madsen, P.L., Schmidt, J.F., Wildschiodtz, G., Friberg, L., Holm, S., Vorstrup, S., and Lassen, N.A., Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eyemovement sleep, J. Appl. Physiol., 1991, vol. 70, pp. 2597–2601.

    CAS  PubMed  Google Scholar 

  33. Maquet, P., Sleep function(s) and cerebral metabolism, Behav. Brain Res., 1995, vol. 69, pp. 75–83.

    Article  CAS  PubMed  Google Scholar 

  34. Nakanishi, H., Sun, Y., Nakamura, R.K., Mori, K., Ito, M., Suda, S., Namba, H., Storch, F.I., Dang, T.P., Mendelson, W., Mishkin, M., Kennedy, C., Gillin, J.C., Smith, C.B., and Sokoloff, L., Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta, Eur. J. Neurosci., 1997, vol. 9, pp. 271–279.

    Article  CAS  PubMed  Google Scholar 

  35. Siegel, J.M., Clues to the functions of mammalian sleep, Nature, 2005, vol. 437, no. 7063, pp. 1264–1271.

    Article  CAS  PubMed  Google Scholar 

  36. Dworak, M., McCarley, R.W., Kim, T., Kalinchuk, A.V., and Basheer, R., Sleep and Brain Energy Levels: ATP changes during sleep, J. Neurosci., 2010, vol. 30, no. 26, pp. 9007–9016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benington, J.H. and Heller, H.C., Restoration of brain energy metabolism as the function of sleep, Prog. Neurobiol., 1995, vol. 45, pp. 347–360.

    Article  CAS  PubMed  Google Scholar 

  38. Ebrahimi-Fakhari, D., Wahlster, L., and McLean, P.J., Molecular chaperones in Parkinson’s disease-present and future, J. Parkinsons Dis., 2011, vol. 1, no. 4, pp. 299–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, D.R., Moussaud, S., and McLean, P., Targeting heat shock proteins to modulate a-synuclein toxicity, Ther. Ad. Neurol. Disord., 2014, vol. 7, no. 1, pp. 33–51.

    Article  Google Scholar 

  40. Neef, D.W., Jaeger, A.M., and Thiele, D.J., Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases, Nat. Rev. Drug Discov., 2011, vol. 10, no. 12, pp. 930–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gusev, E.I., Gekht, A.B., Popov, G.R., Volkova, N.A., Pastukhov, Yu.F., Pronina, T.S., Chesnokova, A.Yu., and Ekimova, I.V., Parkinson’s disease. Clinical manifestations, diagnostics and treatment, Neirodegenerativnye zabolevaniya: fundamental’nye i prikladnye aspekty (Neurodegenerative Diseases: Fundamental and Applied Aspects), Ugryumov, M.V., Ed., Moscow, 2010, pp. 52–86.

  42. Lapshina, K.V and Ekimova, I.V., Study of the protective effects of 70-kDa exogenous heat shock protein in the model of sleep deprivation in pigeons Columba livia, Zh. Evol. Fiziol. Biokhim., 2010, vol. 46, no. 5, pp. 386–394.

    Google Scholar 

  43. Nitsinskaya, L.E., Ekimova, I.V., Guzhova, I.V., Feizulaev, B.A., and Pastukhov, Yu.F., The effect of quercetin on the severity of chemically induces convulsions and 70-kDa heat shock protein content in brain structures in rats, Ross. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 96, no. 3, pp. 283–292.

    CAS  Google Scholar 

  44. Pastukhov, Yu.F., Khudik, K.A., and Ekimova, I.V., Chaperones in regulation and restoration of physiological functions, Ross. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 96, no. 7, pp. 708–725.

    CAS  PubMed  Google Scholar 

  45. Pastukhov, Yu.F., Plaksina, D.V., Lapshina, K.V., Guzhova, I.V., and Ekimova, I.V., Exogenous protein Hsp70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson’s disease, Dokl. Russ. Akad. Sci., 2014, vol. 457, pp. 225–227.

    Google Scholar 

  46. Pastukhov, Yu.F., Chernyshev, M.V., Ekimova, I.V., and Khudik, K.A., Molecular chaperones, new anxiety and sleep homeostasis modulators, Son i trevozhnost’ (Sleep and Anxiety), Verbitsky, E.V., Ed., Rostov-na-Donu, 2008, pp. 188–204.

  47. Khudik, K.A., Pastukhov, Yu.F., and Guzhova, I.V., Effect of thermal preconditioning on convulsive activity in rats with an inherited form of epilepsy, Ross. Fiziol. Zh. im. I.M. Sechenova, 2011, vol. 97, no. 11, pp. 1237–1246.

    CAS  PubMed  Google Scholar 

  48. Pastukhov, Yu.F. and Chesnokova, A.Yu., Alphasynuclein in pathogenesis of Parkinson’s disease and other neurodegenerative diseases, Neirodegenerativnye zabolevaniya: fundamental’nye i prikladnye aspekty (Neurodegenerative Diseases: Fundamental and Applied Aspects), Ugryumov, M.V., Ed., Moscow, 2010, pp. 189–200.

  49. Cirelli, C., The genetic and molecular regulation of sleep: from fruit flies to humans, Nat. Rev. Neurosci., 2009, vol. 10, no. 8, pp. 549–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mackiewicz, M., Naidoo, N., Zimmerman, J.E., and Pack, A.I., Molecular mechanisms of sleep and wakefulness, Ann. N. Y. Acad. Sci., 2008, vol. 1129, pp. 335–349.

    Article  PubMed  Google Scholar 

  51. Naidoo, N., Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders, Sleep Med. Rev., 2009, vol. 13, no. 3, pp. 195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Naidoo, N., Giang, W., Galante, R.J., and Pack, A.I., Sleep deprivation induces the unfolded protein response in mouse cerebral cortex, J. Neurochem., 2005, vol. 92, no. 5, pp. 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  53. Terao, A., Steininger, T.L., Hyder, K., Apte-Deshpande, A., Ding, J., Rishipathak, D., Davis, R.W., Heller, H.C., and Kilduff, T.S., Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep, Neuroscience, 2003, vol. 116, no. 1, pp. 187–200.

    Article  CAS  PubMed  Google Scholar 

  54. Terao, A., Wisor, J.P., Peyron, C., Apte-Deshpande, A., Wurts, S.W., Edgar, D.M., and Kilduff, T.S., Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study, Neuroscience, 2006, vol. 137, no. 2, pp. 593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shaw, P.J., Tononi, G., Greenspan, R.J., and Robinson, D.F., Stress response genes protect against lethal effects of sleep deprivation in Drosophila, Nature, 2002, vol. 417, no. 6886, pp. 287–291.

    Article  CAS  PubMed  Google Scholar 

  56. Pastukhov, Yu.F. and Ekimova, I.V., Molecular, cellular and systemic mechanisms of the protective function of the 70 kDa heat shock protein, Neironauki, 2005, vol. 2, no. 2, pp. 3–25.

    Google Scholar 

  57. Schrder, M. and Kaufman, R.J., ER stress and the unfolded protein response, Mutat. Res., 2005, vol. 569, no. 1–2, pp. 29–63.

    Article  Google Scholar 

  58. Jones, S., Pfister-Genskow, M., Benca, R.M., and Cirelli, C., Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow, J. Neurochem., 2008, vol. 105, no. 1, pp. 46–62.

    Article  CAS  PubMed  Google Scholar 

  59. Mackiewicz, M., Shockley, K.R., Romer, M.A., et al., Macromolecule biosynthesis: a key function of sleep, Physiol. Genomics, 2007, vol. 31, no. 3, pp. 441–457.

    Article  CAS  PubMed  Google Scholar 

  60. Pastukhov, Yu.F., Ekimova, I.V., Guzhova, I.V., and Khudik, K.A., Integrative mechanisms of realization of the pyrogenic and somnogenic effects of the 70 kDa heat shock protein, a hypothesis, Problema integratsii funktsii v fiziologii i meditsine (Problem of Integration of Functions in Physiology and Medicine), Minsk, 2004, pp. 291–298.

    Google Scholar 

  61. Pastukhov, Yu.F., Ekimova, I.V., Khudik, K.A., and Guzhova, I.V., 70 kDa heat shock protein, free of lipopolysaccharides, has a hypothermic and somnogenic effects, Dokl. Russ. Akad. Nauk, 2005, vol. 402, no. 2, pp. 275–278.

    Google Scholar 

  62. Pastukhov, Yu.F., Ekimova, I.V., Khudik, K.A., and Guzhova, I.V., 70 kDa protein in sleep and thermoregulation control, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, no. 1, pp. 65–71.

    PubMed  Google Scholar 

  63. Ekimova, I.V., Somnogenic effect of exogenous heat shock protein 70 kDa is mediated by GABA(A) receptors in the preoptic area of the hypothalamus, Dokl. Russ. Akad. Nauk, 2013, vol. 449, no. 6, pp. 725–728.

    Google Scholar 

  64. Ekimova, I.V., Thermoregulation in pigeon Columba livia under stress induced by food deprivation, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 1, pp. 62–68.

    Google Scholar 

  65. Pastukhov, Yu.F., Ekimova, I.V., Nozdrachev, A.D., Guselnikova, E.A., Sedunova, E.L., and Zimin, A.L., The states of sleep significantly contribute both to “cooling” and “heating” of the brain in the dark phase in pigeons, Dokl. Russ. Akad. Nauk, 2001, vol. 376, no. 6, pp. 836–840.

    CAS  Google Scholar 

  66. Ekimova, I.V. and Pastukhov, Yu.F., The role of adenosine A2A receptors of the preoptic area in somnogenic activity of 70 kDa protein in pigeons, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 8, pp. 428–434.

    CAS  PubMed  Google Scholar 

  67. Lu, J., Greco, M.A., Shiromani, P., and Saper, C.B., Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep, J. Neurosci., 2000, vol. 20, no. 10, pp. 3830–3842.

    CAS  PubMed  Google Scholar 

  68. Saper, C.B., Scammell, T.E., and Lu, J., Hypothalamic regulation of sleep and circadian rhythms, Nature, 2005, vol. 437, no. 27, pp. 1257–1263.

    Article  CAS  PubMed  Google Scholar 

  69. Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J., and Scammell, T.E., Sleep state switching, Neuron, 2010, vol. 68, no. 6, pp. 1023–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sherin, J.E., Shiromani, P.J., McCarley, R.W., and Saper, C.B., Activation of ventrolateral preoptic neurons during sleep, Science, 1996, vol. 271, no. 5246, pp. 216–219.

    Article  CAS  PubMed  Google Scholar 

  71. Pastukhov, Yu.F., Simonova, V.V., Guzeev, M.A., Meshalkina, D.A., Guzhova, I.V., and Ekimova, I.V., Chaperone Hsp70 is involved in molecular mechanisms of slow sleep regulation, Dokl. Russ. Akad. Nauk, 2015, vol. 461, no. 2, pp. 228–231.

    Google Scholar 

  72. Novoselov, S.S., Novoselova, T.V., Verbova, M.V., Margulis, B.A., and Guzhova, I.V., Qualitative balance between HSP70 and its cochaperones HDJL and BAGL determines its substrate- binding activity, Tsitol., 2005, vol. 47, no. 3, pp. 220–229.

    CAS  Google Scholar 

  73. Kampinga, H.H. and Craig, E.A., The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, no. 8, pp. 579–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Freeman, B.C. and Morimoto, R.I., The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding, EMBO J., 1996, vol. 15, no. 12, pp. 2969–2979.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pastukhov, Yu.F., Ekimova, I.V., Meshalkina, D.A., Guzeev, M.A., Chernyshev, M.V., Lapshina, K.V., Lukina, E.A., Lazarev, V.F., Khudikh, K.A., and Guzhova, I.V., A study of the involvement of Hdj1 co-chaperone in sleep and behavior modulation using microRNA technology in vivo, Russ. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, no. 12, pp. 1530–1543.

    CAS  Google Scholar 

  76. Pastukhov, Yu.F., Chernyshev, M.V., Simonova, V.V., Guzeev, M.A., Meshalkina, D.A., and Ekimova, I.V., Analisis of participation of molecular chaperones in regulation of sleep homeostasis and anxiety-like behavior using microRNA technology in vivo, Proc. of the 8th Intern. Workshop “Sleep: a window to the world of wakefulness”, Saint Petersburg, 2015, pp. 81–82.

    Google Scholar 

  77. Lapshina, K.V., Guzeev, M.A., and Simonova, V.V., Molecular chaperone GRP78 is involved in the regulatory mechanisms of sleep, Proc. of the 8th Intern. Workshop “Sleep: a window to the world of wakefulness”, Saint Petersburg, 2015, pp. 65–66.

    Google Scholar 

  78. Margulis, B.A. and Guzhova, I.V., Double role of chaperones in response of a cell and whole organism to stress, Tsitol., 2009, vol. 51, no. 3, pp. 219–228.

    CAS  Google Scholar 

  79. Methippara, M.M., Bashir, T., Kumar, S., Alam, N., Szymusiak, R., and McGinty, D., Salubrinal, an inhibitor of protein synthesis, promotes deep slow wave sleep, Am. J. Physiol. (Regul. Integr. Comp. Physiol.), 2009, vol. 296, pp. R178–R184.

    CAS  Google Scholar 

  80. Methippara, A., Mitrani, B., Schrader, F.X., Szymusiak, R., and McGinty, D., Salubrinal, an endoplasmic reticulum stress blocker, modulates sleep homeostasis and activation of sleep- and wake-regulatory neurons, Neuroscience, 2012, vol. 3, no. 209, pp. 108–118.

    Google Scholar 

  81. Ramm, P. and Smith, C.T., Rates of cerebral protein synthesis are linked to slow wave sleep in the rat, Physiol. Behav., 1990, vol. 48, pp. 749–753.

    Article  CAS  PubMed  Google Scholar 

  82. Schubert, U., Anton, L.C., Gibbs, J., et al., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature, 2000, vol. 404, pp. 770–774.

    Article  CAS  PubMed  Google Scholar 

  83. Calasso, M. and Parmeggiani, P.L., Carotid blood flow during REM sleep, Sleep, 2008, vol. 31, no. 5, pp. 701–707.

    PubMed  PubMed Central  Google Scholar 

  84. Pastukhov, Yu.F., Sleep cycle and molecular chaperones: facts, hypotheses, guesses, Proc. of the 7th Intern. Workshop “Sleep: a window to the world of wakefulness”, Rostov-na-Donu, 2013, pp. 17–23.

    Google Scholar 

  85. Kovalzon, V.M. and Tsibulsky, V.L., REM-sleep deprivation, stress and emotional behavior in rats, Behav. Brain Res., 1984, vol. 14, no. 3, pp. 235–245.

    Article  CAS  PubMed  Google Scholar 

  86. Kovalzon, V.M., Paradoxes of paradoxical sleep, Priroda, 1982, no. 8, pp. 74–79.

    Google Scholar 

  87. Rial, R.V., Akaarir, M., Gamundi, A., Nicolau, C., et al., Evolution of wakefulness, sleep and hibernation: from reptiles to mammals, Neurosci. Biobehav. Rev., 2010, vol. 34, no. 8, pp. 1144–1160.

    PubMed  Google Scholar 

  88. Roffwarg, H.P., Muzio, J., and Dement, W.G., Ontogenetic development of the human sleep–dream cycle, Science, 1966, vol. 152, pp. 604–619.

    Article  CAS  PubMed  Google Scholar 

  89. Roffwarg, H.R., Participation of REM sleep in the development of the brain: starting hypothesis, unfolding data, current perspective, SRS Bulletin, 2009, vol. 15, no. 2, p. 6.

    Google Scholar 

  90. Szymusiak, R. and Satinoff, E., Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate, Physiol. Behav., 1981, vol. 26, no. 4, pp. 687–690.

    Article  CAS  PubMed  Google Scholar 

  91. Pastukhov, Yu.F., Paradoxical sleep as an indicator of homeostasis “well-being” during long-term food deficiency in cold environment, Proc. of the 6th Intern. Workshop “Sleep: a window to the world of wakefulness”, Moscow, 2011, pp. 20–27.

    Google Scholar 

  92. Pastukhov, Yu.F., Chepkasov, I.E., and Nevretdinova, Z.G., Changes in sleep and thermoregulation patterns in arctic ground squirrels during the year, Sleep Res., 1993, vol. 22, pp. 467–468.

    Google Scholar 

  93. Pastukhov, Yu.F., Nevretdinova, Z.G., and Slovikov, B.I., Daily and seasonal changes in thermoregulatory behavior of the Arctic ground squirrel Citellus parryi, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, no. 4, pp. 480–487.

    Google Scholar 

  94. von der Ohe, C.G., Darian-Smith, C., Garner, C.C., and Heller, H.C., Ubiquitous and temperature-dependent neural plasticity in hibernators, J. Neurosci., 2006, vol. 26, pp. 10590–10598.

    Article  PubMed  Google Scholar 

  95. von der Ohe, C.G., Garner, C.C., Darian-Smith, C., and Heller, H.C., Synaptic protein dynamics in hibernation, J. Neurosci., 2007, vol. 27, no. 1, pp. 84–92.

    Article  PubMed  Google Scholar 

  96. Heller, H.C., The ups and downs of synapses during sleep and learning, Sleep, 2014, vol. 37, no. 7, pp. 1157–1158.

    PubMed  PubMed Central  Google Scholar 

  97. Pastukhov, Yu.F. and Chepkasov, I.E., Differences in temporal organization of “summer” and “winter” sleep in hibernating mammals, Dokl. Russ. Akad. Nauk, 1994, vol. 339, no. 4, pp. 555–556.

    CAS  Google Scholar 

  98. Bitting, L., Watson, F.L., OHara, B.F., Kilduff, T.S., Heller, H.C., HSP70 is increased during the day in a diurnal animal, the golden-mantled ground squirrel Spermophilus lateralis, Mol. Cell. Biochem., 1999, vol. 199, no. 1–2, pp. 25–34.

    Article  CAS  PubMed  Google Scholar 

  99. Mamady, H. and Storey, K.B., Up-regulation of endoplasmic reticulummolecular chaperone GRP78 during hibernatikon in thirteen-lined ground squirrels, Mol. Cell. Biochem., 2006, vol. 292, pp. 89–98.

    Article  CAS  PubMed  Google Scholar 

  100. Zefirov, A.L. and Petrov, A.M., Sinapticheskaya Vezikula i Mekhanizm Osvobozhdeniya Mediatora (Ekzo-Endotsitoznyi Vezikulyarnyi Tsikl) (Synaptic Vesicle and Mechanism of Neurotransmitter Release (Exo-Endocytotic Vesicular Cycle)), Kazan, 2010.

    Google Scholar 

  101. Lyamin, O.I., Paradoxical (REM) sleep: the stage of unusual phenomenology, unknown functions and unclear biological significance, Proc. of the 6th Intern. Workshop “Sleep: a Window To the World of Wakefulness”, Moscow, 2011, pp. 16–19.

    Google Scholar 

  102. Gronli, J., Soule, J., and Bramham, C.R., Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress, Front. Behav. Neurosci., 2014, vol. 7, pp. 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Pastukhov.

Additional information

Original Russian Text © Yu.F. Pastukhov, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 1, pp. 79—90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, Y.F. Slow-wave sleep and molecular chaperones. J Evol Biochem Phys 52, 87–101 (2016). https://doi.org/10.1134/S0022093016010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016010117

Keywords

Navigation