Skip to main content
Log in

Evolutionary evaluation of reciprocity of connections in the turtle tectofugal visual system

  • Morphological Bases for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In two turtle species—Emys orbicularis and Testudo horsfieldi—by the method of anterograde and retrograde traicing at the light and electron microscopy level, the existence is proven of direct descending projections from the thalamic nucleus of the tectofugal visual system n. rotunds (Rot) to the optic tectum. After injection of tracers into Rot alone and into Rot with involvement of the tectothalamic tract (Trtth), occasional labeled fibers with varicosities and terminals are revealed predominantly in the deep sublayers of SGFS of the rostral optic tectum, while in the lower amount—in other tectal layers. After the tracer injections into the optic tectum, a few retrogradely labeled neurons were found mainly in the Rot ventral parts and within Trtth. Their localization coincides with that of GABA-immunoreactive cells. Electron microscopy showed the existence of many retrogradely labeled dendrites throughout the whole Rot; a few labeled cell bodies were also present there, some of them being also GABA-immunoreactive. These results allow us to conclude about the existence of reciprocal connections between the optic tectum and Rot in turtles, these connections being able to affect processing of visual information in tectum. We suggest that reciprocity of tectothalamic connections might be the ancestral feature of the vertebrate brain; in the course of amniote evolution the functional significance of this feature can be decreased and even lost in parallel with a rise of the role of direct corticotectal projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Advr:

anterior dorsal ventricular edge

BDA:

biotinylated dextran amine

CS:

colliculus superior

Cp:

colliculus posterior

Dla:

n. dorsolateralis anterior

Dma:

n. dorsomedialis anterior

GLd:

n. geniculatus lateralis dorsalis

Gp:

n. geniculatus pretectalis

GLv:

n. geniculatus lateralis ventralis

Ftl:

fasciculus telencephali lateralis

HRP:

horseradish peroxidase

ir:

immunoreactive

LP:

n. lateralis posterior

Pedd:

pedunculus dorsalis Ftl

Ptd:

n. pretectalis dorsalis

Ptv:

n. pretectalis ventralis

Pulv:

pulvinar

Re:

n. reuniens

Rot:

n. rotundus

SGC:

stratum griseum centrale To

SGFS:

stratum griseum et fibrosum superficiale To

SGP:

stratum griseum periventriculare

To:

tectum opticum

Tro:

tractus opticus

Trtth:

tractus tectothalamicus

TS:

torus semicicrcularis

References

  1. Winer, J.A., Chernock, M.L., Larue, D.T., and Cheng, S.W., Descending Projections to the Inferior Colliculus from the Posterior Thalamus and Auditory Cortex in Rat, Cat, and Monkey, Hear. Res. 2002, vol. 168, pp. 181–195.

    Article  PubMed  Google Scholar 

  2. Davidson, R.M., Joly, T.J., and Bender, D.B., Effect of Corticotectal Tract Lesions on Relative Motion Selectivity in the Monkey Superior Colliculus, Exp. Brain Res., 1992, vol. 92, pp. 246–258.

    Article  PubMed  CAS  Google Scholar 

  3. Reiner, A., Laminar Distribution of the Cells of Origin of Ascending and Descending Tectofugal Pathways in Turtles: Implications for the Evolution of Tectal Lamination, Brain Behav. Evol., 1994, vol. 43, pp. 254–292.

    Article  PubMed  CAS  Google Scholar 

  4. Belekhova, M.G., Kenigfest, N.B., Rio, J.-P., Reperant, J., Ward, R., Vesselkin, N.P., and Karamian, O.A., Tectorhalamic Visual Projections in Turtles: Their Cells of Origin Revealed by Tracing Methods, J. Comp. Neurol., 2003, vol. 457, pp. 37–56.

    Article  PubMed  Google Scholar 

  5. Belekhova, M.G., Zharskaja, V.D., Khachunts, A.S., Gaidaenko, G.V., and Tumanova, N.L., Connections of the Mesencephalic, Thalamic and Telencephalic Auditory Centers in Turtles. Some Structural Basis for Audiosomatic Interrelations, J. Hirnforsch., 1985, vol. 22. pp. 127–152.

    Google Scholar 

  6. Karamian, O.A., Zagorulko, T.M., Belekhova, M.G., Kosareva, A.A., and Vesselkin, N.P., Mophofunctional Peculiarities of Cortical-Subcortical Interrelations in Premammalian Vertebrates, Korkovaya regulyatsiya deyatel’nosti podkorkovykh obrazovanii golovnogo mozga (Cortical Regulation of Activity of Subcortical Brain Structures), Tbilisi, 1968, pp. 96–114.

  7. Hall, J.A., Foster, R.E., Ebner, F.F., and Hall, W.C., Visual Cortex in a Reptile, the Turtle (Pseudemys scripta and Chrysemys picta), Brain Res., 1977, vol. 130, pp. 197–216.

    Article  PubMed  CAS  Google Scholar 

  8. Elprana, D., Wouterlood, F.G., and Alones, V.E., A Corticotectal Projection in the Lizard Agama agama, Neurosci. Lett., 1980, vol. 18, pp. 251–256.

    Article  PubMed  CAS  Google Scholar 

  9. Papez, J.W., Thalamus of Turtles and Thalamic Evolution, J. Comp. Neurol., 1935, vol. 61, pp. 433–475.

    Article  Google Scholar 

  10. Ermakova, T.V., Kenigfest, N.B., and Vesselkin, N.P., Transneuronal Distribution of Horseradish Peroxidase in the Brain of the Frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 1981, vol. 17, pp. 95–96.

    Google Scholar 

  11. Kenigfest, N.B., Belekhova, M.G., Reperant, J., Rio, J.-P., and Vesselkin, N.P., Pretectal Connections in Turtles with Special Reference to the Visual Thalamic Centers: A Hodological and Aminobutyric Acid-Immunohistochemical Study, J. Comp. Neurol., 2000, vol. 426, pp. 31–50.

    Article  PubMed  CAS  Google Scholar 

  12. Northcutt, G.R., Anatomical Organization of the Optic Tectum in Reptiles, Comparative Neurology of the Optic Tectum, New York, 1984, pp. 547–600.

  13. Ten Donkelaar, H.J., Bangma, G.C., Barbas-Henry, H.A., de Boer-van Huizen, R., and Wolters, J.G., The Brain Stem in a Lizard Varanus exanthematicus, Adv. Anat. Embryol. Cell. Biol., 1987, pp. 1–166.

  14. Isabekova, S.B., Electrophysiological Analysis of Corticotectal Connections in Turtles, Neirofiziol., 1974, vol. 6, pp. 127–134.

    CAS  Google Scholar 

  15. Gaidaenko, G.B., About Descending Connections of the Turtle Dorsal Cortex, Zh. Evol. Biokhim. Fiziol., 1977, vol. 13, pp. 416–418.

    PubMed  CAS  Google Scholar 

  16. Tumanova, N.L., Projections of Striatal Area to the Round Thalamic Nucleus of the Turtle Emys orbicularis, Morfologicheskie osnovy funktsional’noi evolyutsii (Morphologic Grounds of Functional Evolution), Leningrad, 1978, pp. 64–66.

  17. Kenigfest, N.B., Belekhova, M.G., Reperant, J., Rio, J.-P., Ward, R., and Vesselkin, N.P., The Turtle Thalamic Entopeduncular Nucleus Shares Connectional and Neurochemical Characteristics with Mammalian Thalamic Reticular Nucleus, J. Chem. Neuroanat., 2005, vol. 30, pp. 129–143.

    Article  PubMed  CAS  Google Scholar 

  18. Ulinski, P.S., Dorsal Ventricular Ridge: Treatise on Forebrain Organization in Reptiles and Birds, New York, 1983.

  19. Belekhova, M.G., Corticothalamic Projections in Turtles (Electrophysiological Study), Dokl. Akad. Nauk SSSR, 1972, vol. 206, pp. 1018–1021.

    PubMed  CAS  Google Scholar 

  20. Belekhova, M.G. and Ivazov, N.I., Electrophysiological Study of Descending Telecephalothalamic Connections in the Turtle Emys orbicularis, Zh. Evol. Biokhim. Fiziol., 1981, vol. 17, pp. 264–272.

    Google Scholar 

  21. Miceli, D., Reperant, J., Villalobos, J., and Dionne, L., Extratelencephalic Projections of the Avian Visual Wulst. A Quantitative Autoradiographic Study in the Pigeon Columba livia, J. Hirnforsch., 1987, vol. 28, pp. 45–57.

    PubMed  CAS  Google Scholar 

  22. Casini, G., Porciatti, V., Fontanesi, G., and Bagnoli, P., Wulst Efferents in the Little Owl Athene noctua: An Investigation of Projections to the Optic Tectum, Brain Behav. Evol., 1992, vol. 39, pp. 101–115.

    Article  PubMed  CAS  Google Scholar 

  23. Britto, L.R., Inhibitors of Tectal Neurons from Telencephalic Visual Areas in Pigeon, Rev. Bras. Pesqui. Med. Biol., 1978, vol. 11, pp. 223–227.

    PubMed  CAS  Google Scholar 

  24. Leresche, N., Hardy, O., and Jassik-Gerschenfeld, D., Receptive Properties of Single Cells in the Pigeon Optic Tectum during Cooling of the “Visual Wulst”, Brain Res., 1983, vol. 267, pp. 225–236.

    Article  PubMed  CAS  Google Scholar 

  25. Minelli, G., Faccioli, G., and De Liberali, M., Experimental Study of the Nervous Connections of Some Diencephalic and Mesencephalic Nuclei in Coturnix coturnix japonica, J. Hirnforsch., 1979, vol. 20, pp. 217–232.

    PubMed  CAS  Google Scholar 

  26. Deng, C. and Rogers, L.J., Organization of Tectorotundal and SP/IPC-Rotundal Projections in the Chick, J. Comp. Neurol., 1998, vol. 394, pp. 171–185.

    Article  PubMed  CAS  Google Scholar 

  27. Joly, T.J. and Bender, D.B., Loss of Relative-Motion Sensitivity in the Monkey Superior Colliculus after Lesions of Cortical Area MT, Exp. Brain. Res., 1997, vol. 117, pp. 43–58.

    Article  PubMed  CAS  Google Scholar 

  28. Stain, B.E. and Gallagher, H.L., Maturation of Cortical Control over Superior Colliculus in Cats, Brain Res., 1981, vol. 223, pp. 429–435.

    Article  Google Scholar 

  29. Taylor, A.M., Jeffery, G., and Lieberman, A.R., Subcortical Afferent and Efferent Connections of the Superior Colliculus in the Rat and Comparison between Albino and Pigmented Strains, Exp. Brain Res., 1986, vol. 62, pp. 131–142.

    Article  PubMed  CAS  Google Scholar 

  30. Lugo-Garcia, N. and Kicliter, E., Thalamic Connections of the Ground Squirrel Superior Colliculus and their Topographic Relations, J. Hirnforsch., 1988, vol. 29, pp. 187–201.

    PubMed  CAS  Google Scholar 

  31. Edwards, S.B., Ginsburgh, C.L., Henkel, C.K., and Stein, B.E., Sources of Subcortical Projections in the Superior Colliculus in the Cat, J. Comp. Neurol. 1979, vol. 184, pp. 309–329.

    Article  PubMed  CAS  Google Scholar 

  32. Trachtenberg, M.C. and Ingle, D., Thalamo-Tectal Projections in the Frog, Brain Res., 1974, vol. 79, pp. 419–430.

    Article  PubMed  CAS  Google Scholar 

  33. Northcutt, R.G., Localization of Neurons Afferent to the Optic Tectum in Longnose Gars, J. Comp. Neurol., 1982, vol. 204, pp. 325–335.

    Article  PubMed  CAS  Google Scholar 

  34. Wicht, H. and Northcutt, R.G., Telencephalic Connections in the Pacific Hagfish (Eptatretus stouti), with Special Reference to the Thalamopallial System, J. Comp. Neurol., 1998, vol. 395, pp. 245–260.

    Article  PubMed  CAS  Google Scholar 

  35. Robertson, B., Saitoh, K., Menard, A., and Grillner, S., Afferents of the Lamprey Optic Tectum with Special Reference to the GABA Input: Combined Tracing and Immunohistochemical Study, J. Comp. Neurol., 2006, vol. 499, pp. 106–119.

    Article  PubMed  CAS  Google Scholar 

  36. Ewert, J.P., Neural Mechanisms of Prey-Catching and Avoidance Behavior in the Toad (Bufo bufo L.), Brain Behav. Evol., 1970, vol. 3, pp. 36–56.

    Article  PubMed  CAS  Google Scholar 

  37. Ewert, J.P., Buxbaum-Conradi, H., Dresvogt, F., Glagow, M., Merkel-Harff, C., Rottgen, A., Schurg-Pfeiffer, E., and Schwippert, W.W., Neural Modulation of Visuomotor Functions, Underlying Prey Catching Behavior in Anurans: Perception, Attention, Motor Performance, Learning, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2001, vol. 128, pp. 417–461.

    Article  PubMed  CAS  Google Scholar 

  38. Ito, H. and Vanegas, H., Cytoarchitecture and Ultrastructure of Nucleus Prethalamicus with Special Reference to Degenerating Afferents from the Optic Tectum and Telencephalon in a Teleost (Holocentrus ascensions), J. Comp. Neurol., 1983, vol. 221, pp. 401–415.

    Article  PubMed  CAS  Google Scholar 

  39. de Arbiba Mdel, C. and Pombal, M.A., Afferent Connections of the Optic Tectum in Lampreys: an Experimental Study, Brain Behav. Evol., 2007, vol. 69, pp. 37–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N. B. Kenigfest, M. G. Belekhova, 2009, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2009, Vol. 45, No. 3, pp. 334—342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenigfest, N.B., Belekhova, M.G. Evolutionary evaluation of reciprocity of connections in the turtle tectofugal visual system. J Evol Biochem Phys 45, 406–416 (2009). https://doi.org/10.1134/S0022093009030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093009030107

Key words

Navigation