Skip to main content
Log in

Neurons of visual thalamic nuclei projecting to telencephalon express different types of calcium-binding proteins: A combined immunocytochemical and tracer study

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In turtles (Testudo horsfieldi, Emys orbicularis), immunoreactivity to calbindin (CB), parvalbumin (PV), calretinin (CR) and co-localization of CB and PV were studied in neurons of the visual thalamic nuclei (Rot, GLd) projecting to the telencephalon using a combination of immunohistochemical and tracer methods. The prevalence of CB-immunoreactive (-ir) neurons in Rot, CB-ir and CR-ir neurons in GLd, and a smaller number of PV-ir neurons in both nuclei was shown. Double immunofluorescent labeling revealed that within both nuclei PV and CB are colocalized in most PV-ir and fewer CB-ir neurons. After injection of horseradish peroxidase into the Rot and GLs telencephalic projection fields, retrograde labeling was found in corresponding thalamic projection neurons immunoreactive to all the three proteins. After introduction of the fluorescent tracer Fluo-gold into the same telencephalic regions, retrograde labeling was detected in Rot and GLd neurons immunoreactive only to PV and CB as well as in neurons with colocalization of both proteins. These findings provide further evidence that in turtles the CB component prevails in the rotundo-telencephalic pathway while the CB/CR component is dominant in the geniculotelencephalic pathway. The role of functional specialization in segregation of neurons expressing distinct types of calcium-binding proteins is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADVR:

anterior dorsal ventricular ridge

ADVRdl:

dorsolateral region of ADVR

CaBPr:

calcium-binding proteins

CB:

calbindin

CR:

calretinin

Cxdl:

cortex dorsolateralis

Cxl:

cortex lateralis

Dla:

nucleus dorsolateralis anterior

Dma:

nucleus dorsomedialis anterior

GLd:

nucleus geniculatus lateralis, pars dorsalis

GLdc:

Gld cell layer

FG:

Fluoro-gold

fpl:

fasciculus prosencephali lateralis

ir:

immunoreactive

HRP:

horseradish peroxidase

Path:

pallial thickening

pedd:

pedunculus dorsalis fpl

PV:

parvalbumin

Rot:

nucleus rotundus

SGC:

stratum griseum centrale tecti optici

Str:

striatum

tro:

tractus opticus

V:

ventriculus

References

  1. Belekhova, M.G., Kenigfest, N.B., Minakova, M.N., Rio, J.-P., and Repérant, J., Calciumbinding proteins in the thalamus of turtles, Zh. Evol. Biokhim. Fiziol., 2003, vol. 39, pp. 504–523.

    CAS  PubMed  Google Scholar 

  2. Belekhova, M.G., Kenigfest, N.B., and Chudinova, T.V., Distribution of calcium-binding proteins and metabolic activity (cytochrome oxidase) in the thalamencephalon regions of the visual system in turtles, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, pp. 274–285.

    Google Scholar 

  3. Guirado, S., Martinez-Garcia, F., Andreu, M.J., and Davila, J.C., Calcium-binding proteins in the dorsal ventricular ridge in the lizard, Psammodromus algiris, J. Comp. Neurol., 1999, vol. 405, pp. 32–44.

    Article  CAS  PubMed  Google Scholar 

  4. Davila, J.C., Guirado, S., and Puelles, L., Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algiris, J. Comp. Neurol., 2000, vol. 427, pp. 67–92.

    Article  CAS  PubMed  Google Scholar 

  5. Guirado, S., 1997, cited from Guirado, S., et al., 1999.

    Google Scholar 

  6. Kenigfest, N.B., Martinez-Marcos, A., Belekhova, M.G., Font, C., Lanuze, E., Desfilis, E., and Martinez-Garci, F., A lacertilian dorsal retinorecipient thalamus: a reinvestigation in the old-world lizard Podarcis hispanica, Brain Behav. Evol., 1997, vol. 50, pp. 313–334.

    Article  CAS  PubMed  Google Scholar 

  7. Davila, J.C., Padial, J., Andreu, M.J., Real, M.A., and Guirado, S., Calretinin jmmunoreactivity in the cerebral cortex of the lizard Psammodromus algirus: a light and electron microscopic study, J. Comp. Neurol., 1997, vol. 382, pp. 382–393.

    Article  CAS  PubMed  Google Scholar 

  8. Davila, J.C., Padial, J., Andreu, M.J., and Guirado, S., Calbindin D28k in cortical regions of the lizard Psammodromus algirus, J. Comp. Neurol., 1999, vol. 405, pp. 61–74.

    Article  CAS  PubMed  Google Scholar 

  9. Belekhova, M.G., Kenigfest, N.B., Chkheidze, D.D., Vesselkin, N.P., and Réperant, J., GABAergic non-projection and glutamatergic projection neurons in the corpus geniculatum laterale pars dorsalis of the turtle Emys orbicularis: a double labeling using HRP tracing and immunocytochemistry, Zh. Evol. Biokhim. Fiziol., 1993, vol. 29, pp. 515–521.

    CAS  Google Scholar 

  10. Papez, J.W., Thalamus of turtles and thalamic evolution, J. Comp. Neurol., 1935, vol. 55, pp. 433–475.

    Article  Google Scholar 

  11. Powers, A.S. and Reiner, A., A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta), J. Hirnforsch., 1980, vol. 21, pp. 125–159.

    CAS  PubMed  Google Scholar 

  12. Belekhova, M.G., Kratskin, I.L., Réperant, J., Pierr, J., Vesselkin, N.P., Kenigfest, N.B., Tumanova, N.L., and Chkheidze, D.D., Localization of GABA immunoreactivity in the thalamus of turtles (Emys orbicularis), Zh. Evol. Biokhim. Fiziol., 1991, vol. 27, pp. 676–685.

    Google Scholar 

  13. Pritz, M.B. and Stritzel, M.E., Glutamic acid decarboxylase immunoreactivity in some dorsal thalamic nuclei in Crocodilia, Neurosci. Lett., 1994, vol. 165, pp. 109–11.

    Article  CAS  PubMed  Google Scholar 

  14. Pritz, M.B. and Stritzel, M.E., Morphological and GAD immunocytochemical properties of the dorsal geniculate nucleus in a reptile, Brain Res. Bull., 1994, vol. 33, pp. 723–726.

    Article  CAS  PubMed  Google Scholar 

  15. Kenigfest, N.B., Reperant, J., Rio, J.-P., Belekhova, M.G., Tumanova, N.L., Ward, R., Vesselkin, N.P., Herbin, M., Chkheidze, D.D., and Ozirskaya, E.V., The fine structure of the dorsal lateral geniculate nucleus of the turtle Emys orbicularis. A Golgi combined HRP tracing and GABA cytochemical study, J. Comp. Neurol., 1995, vol. 356, pp. 595–614.

    Article  CAS  PubMed  Google Scholar 

  16. Diamond, I.T., Fitzpatrick, D., and Schmechel, D., Calcium-binding protein distinguishes large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and tree shrew (Tupaia belangeri), Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 1425–1429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jones, E.G., Viewpoint: the core and matrix of thalamic organization, Neurosci., 1998, vol. 85, pp. 331–345.

    Article  CAS  Google Scholar 

  18. Soares, J.G., Botelho, E.P., and Gattass, R., Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys, J. Chem. Neuroanat., 2001, vol. 22, pp. 139–146.

    Article  CAS  PubMed  Google Scholar 

  19. Celio, M.R., Calbindin d 28k and parvalbumin in the rat nervous system, Neurosci., 1990, vol. 35, pp. 375–475.

    Article  CAS  Google Scholar 

  20. Vater, M. and Braun, K., Parvalbumin, calbindin D-28k, and calretinin immunoreactivity in the ascending auditory pathway of hoarseshoe bats, J. Comp. Neurol., 1994, vol. 341, pp. 534–558.

    Article  CAS  PubMed  Google Scholar 

  21. Ishida, J.M., Rosa, M.G.P., and Casagrande, V.A., Does the visual system of the flying fox resemble that of primates? The distribution of calciumbinding proteins in the primary visual pathway of Pteropus poliocephalis, J. Comp. Neurol., 2000, vol. 417, pp. 73–87.

    Article  Google Scholar 

  22. Martin del Campo, H.M., Measor, K., and Razak, K.A., Parvalbumin and calbindin expression in parallel thalamocortical pathways in a gleaning bat, Antrozous pallidus, J. Comp. Neurol., 2014, vol. 522, pp. 2431–2445.

    Article  PubMed  Google Scholar 

  23. Münkle, M.C., Waldfogel, H.J., and Faull, R.L., The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus, J. Chem. Neuroanat., 2000, vol. 19, pp. 155–173.

    Article  PubMed  Google Scholar 

  24. Braun, K., Scheich, H., Schachner, M., and Heizmann, C.W., Distribution of parvalbumin, cytochrome oxidase activity and [14C]-2-deoxyglucose uptake in the brain of zebra finch. II. Visual system, Cell Tissue Res., 1985, vol. 240, pp. 117–127.

    Article  CAS  Google Scholar 

  25. Heizmann, C.W. and Braun, K., Calcium-binding proteins: molecular and functional aspects, The Role of Calcium in Biological Systems, Roca Raton, FL, 1990, pp. 21–55.

    Google Scholar 

  26. Pfeiffer, C.P. and Britto, L.R., Distribution of calcium- binding proteins in the chick visual system, Braz. J. Med. Biol. Res., 1997, vol. 30, pp. 1315–1318.

    Article  CAS  PubMed  Google Scholar 

  27. Pritz, M.B. and Siadati, A., Calcium-binding pro tein immunoreactivity in nucleus rotundus in a reptile, Caiman crocodiles, Brain Behav. Evol., 1999, vol. 53, pp. 277–287.

    Article  CAS  PubMed  Google Scholar 

  28. Heyers, D., Manns, M., Luksch, H., Güntürkün, O., and Mouritsen, H., Calcium-binding proteins label functional streams of the visual system in a songbird, Brain Res. Bull., 2008, vol. 75, pp. 324–355.

    Article  Google Scholar 

  29. Metzger, M., Fernandez, M.O., Miziara Ribeiro, L.A., and Baron, J., Neuroanatomy of visual and auditory areas of the forebrain and thalamus of the barn owl, 6-th European Conference of Comparative Neurobiology, Valencia, 2010, p. 63.

    Google Scholar 

  30. Belekhova, M.G., Chudinova, T.V., Tostivint, H., Rio, J.P., Vesselkin, N.P., and Kenigfest, N.B., The distribution of calcium-binding proteins in the visual thalamic nuclei and related pretectal and mesencephalic nuclei in pigeons. Phylogenetic and functional determinating factors, [in press].

  31. Schwaller, B., Meyer, M., and Schiffmann, S., “New” functions for “old” protein. The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin in cerebellar physiology. Studies with knockout mice, The Cerebellum, 2002, vol. 1, pp. 241–258.

    Article  CAS  PubMed  Google Scholar 

  32. Herron, P., Baskerville, K.A., Chang, H.T., and Doetsch, G.S., Distribution of neurons immunoreactive for parvalbumin and calbindin in the somatosensory thalamus in raccon, J. Comp.Neurol., 1997, vol. 388, pp. 120–129.

    Article  CAS  PubMed  Google Scholar 

  33. Schwaller, B., Emerging functions of the Ca 2+ buffers” parvalbumin, calbindin D-28k and calretinin in the brain, Handbook of Neurochemistry and Molecular Biology. Neural Protein Metabolism and Function, New York, 2007, vol. 7, pp. 197–222.

    Article  Google Scholar 

  34. Wild, J.H., Williams, M.N., Howie, G.J., and Mooney, R., Calcium-binding proteins define interneurons in HVC of zebra finch (Taeniopygia guttata), J. Comp. Neurol., 2005, vol. 483, pp. 76–90.

    Article  CAS  PubMed  Google Scholar 

  35. Braun, K., Scheich, H., Zuschratter, W., Heizmann, C.W., Matute, C., and Streit, O., Postnatal development of parvalbumin-, calbindin- and GABA-immunoreactivity in two visual nuclei of zebra finch, Brain Res., 1988, vol. 475, pp. 205–217.

    Article  CAS  PubMed  Google Scholar 

  36. Yan, Y.-H., Winarto, A., Mansjoer, I., and Hendrickson, A., Parvalbumin, calbindin and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus, J. Neurobiol., 1996, vol. 31, pp. 189–209.

    Article  CAS  PubMed  Google Scholar 

  37. Lohmann, C. and Friauf, E., Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem nuclei of adult and developing rats, J. Comp. Neurol., 1966, vol. 367, pp. 90–10.

    Article  Google Scholar 

  38. Alcantara, S., de Lecea, L., Del Rio, J.A., Ferrer, I., and Soriano, E., Transient colocalization of parvalbumin and calbindin D 28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons, Eur. J. Neurosci., 1996, vol. 8, pp. 1329–1339.

    Article  CAS  PubMed  Google Scholar 

  39. Ulfig, N., Calcium-binding proteins in the human developing brain, Adv. Anat. Embryol. Cell. Biol., 2002, vol. 165, pp. 1–92.

    Article  Google Scholar 

  40. Legaz, I., Olmos, L., Real, M.A., Guirado, S., Davila, J.C., and Medina, L., Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse with emphasis on those of the the basolateral amygdalar complex, J. Comp. Neurol., 2005, vol. 488, pp. 492–513.

    Article  CAS  PubMed  Google Scholar 

  41. Davila, J.C., Olmos, L., Legaz, I., Medina, L., Guirado, S., and Real, M.A., Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development, J. Chem. Neuroanat., 2008, vol. 35, pp. 67–76.

    Article  CAS  PubMed  Google Scholar 

  42. Uhlen, P., Fritz, N., Smelder, E., Malmersjo, S., and Kantani, S., Calcium signaling in neocortical development, Dev. Neurobiol., 2015, vol. 75, pp. 360–368.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y.J., Liu, C.L., and Iseng, G.F., Compartmentalization of calbindin and parvalbumin in different parts of rat rubrospinal neurons, Neurosci., 1996, vol. 74, pp. 427–434.

    Article  CAS  Google Scholar 

  44. Hammond, C., Cellular and Molecular Neurophysiology, 3rd ed., Amsterdam and oth., 2008.

    Google Scholar 

  45. Holt, C.H. and Schuman, E.M., The central dogma decentralized: new perspectives on RNA function and local translation in neurons, Neuron, 2013, vol. 80, pp. 648–667.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sidibe, M. and Smith, Y., Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium-binding proteins, Neurosci., 1999, vol. 89, pp. 1189–208.

    Article  CAS  Google Scholar 

  47. McDonald, A.J. and Betette, R.L., Parvalbumincontaining neurons in the rat basolateral amygdala: morphology and co-localization of calbindin-D (28k), Neurosci., 2001, vol. 102, pp. 413–425.

    Article  CAS  Google Scholar 

  48. Mascagni, F., Muly, E.C., Rainie, D.C., and Mc Donald, A., Immunohisochemical characterization of parvalbumin-containing interneurons in the monkey basolateral amygdale, Neurosci., 2009, vol. 158, pp. 1541–1550.

    Article  CAS  Google Scholar 

  49. Leuba, G. and Saini, K., Colocalization of parvalbumin, calretinin and calbindin D-28k in human cortical and subcortical visual structures, J. Chem. Neuroanat., 1997, vol. 13, pp. 41–52.

    Article  CAS  PubMed  Google Scholar 

  50. Felch, D.L. and van Hooser, S.D., Molecular compartmentalization of lateral geniculate nucleus in the gray squrrel (Sciurus carolinenesis), Front. Neuroanat., 2012, vol. 6, p. 12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Por, A., Pocsal, K., Rusznak, Z., and Szucs, G., Presence and distribution of three calcium binding proteins in projection neurons of the adult rat cochlear nucleus, Brain Res., 2005, vol. 1039, pp. 63–74.

    Article  CAS  PubMed  Google Scholar 

  52. Chudinova, T.V., Belekhova, M.G., Tostivint, E., Rio, J.P., Ward, R., and Kenigfest, N.B., Differences in CB- and PV-chemospecificity in the centres of the ascending auditory pathway of turtles revealed by double immunofluorescence labeling, Brain Res., 2012, vol. 1473, pp. 87–103.

    Article  CAS  PubMed  Google Scholar 

  53. Luksch, H., Karten, H.J., Kleinfeld, D., and Wessel, R., Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in chick optic tectum, J. Neurosci., 2001, vol. 21, pp. 6440–6446.

    CAS  PubMed  Google Scholar 

  54. Chudinova, T.V., Kenigfest, N.B., and Belekhova, M.G., Components of the pigeon tectothalamic visual pathway revealed by studying cytochrome oxidase activity and immunoreactivity to calciumbinding proteins, Zh. Evol. Biokhim. Fiziol., 2010, vol. 46, pp. 522–529.

    CAS  PubMed  Google Scholar 

  55. Van Brederode, J.F., Mulligam, K.A., and Hehdrickson, A.E., Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex, J. Comp. Neurol., 1990, vol. 298, pp. 1–22.

    Article  CAS  PubMed  Google Scholar 

  56. De Felipe, J., Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D 28k, parvalbumin and calretinin in the neocortex, J. Chem. Neuroanat., 1997, vol. 14, pp. 1–19.

    Article  CAS  Google Scholar 

  57. Zaitsev, A.V., Gonzalez-Burgos, G., Povy sheva, N.V., Kroner, S., Lewis, D.A., and Krimer, L.S., Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex, Cereb. Cortex, 2005, vol. 15, pp. 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  58. Letinic, K. and Kostovic, I., Postnatal development of calcium-binding proteins calbindin and parvalbumin in human visual cortex, Cereb. Cortex, 1998, vol. 8, pp. 660–669.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Kenigfest.

Additional information

Original Russian Text © N.B. Kenigfest, M.G. Belekhova, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 6, pp. 449—458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenigfest, N.B., Belekhova, M.G. Neurons of visual thalamic nuclei projecting to telencephalon express different types of calcium-binding proteins: A combined immunocytochemical and tracer study. J Evol Biochem Phys 51, 505–516 (2015). https://doi.org/10.1134/S0022093015060083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015060083

Key words

Navigation