Skip to main content
Log in

State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In experiments on mollusc Lymnaea stagnalis, the state of antioxidative protection is studied in central nervous ganglia during a long-term activation (inhibition) of synthesis of nitrogen monoxide (NO) in the body. The effect of the blocker of NO-synthase NG-nitro-L-arginine (L-NNA) at the background of enhancement of pulmonary respiration has been found to be associated with a rise of levels of reduced glutathione and TBK-active products in the nervous tissue at preservation of a relatively high superoxide dismutase activity and a low glutathione peroxidase activity compared with the control group and the animals treated with the metabolic precursor of NO synthesis L-arginine. In spite of the revealed disturbances of balance of the body proand antioxidative system, DNA electrophoresis detected no products of its degradation, which can indicate the absence of massive programmed death of the nervous tissue cells in Lymnaea stagnalis during modulation of activity of the NO-ergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vincent, S.R., Nitric Oxide: a Radical Neurotransmitter in the Central Nervous System, Progr. Neurobiol., 1994, vol. 42, pp. 129–160.

    Article  CAS  Google Scholar 

  2. Moroz, L.L. and Gilletee, R., From Polyplacophora to Cephalopoda: Comparative Analysis of Nitric Oxide Signalling in Mollusca, Acta Biol. Hung., 1995, vol. 46, pp. 169–182.

    PubMed  CAS  Google Scholar 

  3. Bredt, D.S. and Snyder, S.H., Nitric Oxide, a Novel Neuronal Messenger, Neuron, 1992, vol. 8, pp. 3–11.

    Article  PubMed  CAS  Google Scholar 

  4. Blough, N.V. and Zafiriou, O.C., Reaction of Superoxide with Nitric-Oxide to Form Peroxonitrite in Alkaline Aqueous-Solution, Inorg. Chem., 1985, vol. 24, pp. 3502–3504.

    Article  CAS  Google Scholar 

  5. Dubinina, E.E., Role of the Active Oxygen Forms as Signaling Molecules in Tissue Metabolism at States of Oxidative Stress, Vopr. Med. Khim., 2001, vol. 47, pp. 561–581.

    PubMed  CAS  Google Scholar 

  6. Beckman, K. and Ames, B.N., The Free Radical Theory of Aging Matures, Physiol. Rev., 1998, vol. 78, pp. 547–581.

    PubMed  CAS  Google Scholar 

  7. Moroz, L.L., Winlow, W., Turner, R.W., Bulloch, A.G., Lukowiak, K., and Syed, N.I., Nitric Oxide Synthase-Immunoreactive Cells in the CNS and Periphery of Lymnaea, NeuroReport, 1994, vol. 5, pp. 1277–1280.

    PubMed  CAS  Google Scholar 

  8. Moroz, L.L., Park, J.-H., and Winlow, W., Nitric Oxide Activates Buccal Motor Patterns in Lymnaea stagnalis, NeuroReport, 1993, vol. 4, pp. 643–646.

    Article  PubMed  CAS  Google Scholar 

  9. Moroz, L.L. and Park, J.-H., Nitric Oxide Modulates the Central Respiratory Patterns in Lymnaea stagnalis, J. Physiol., 1993, vol. 473, p. 188.

    Google Scholar 

  10. Kazakevich, V.B., Sidorov, A.V., and Gurin, V.N., Nitroden Monoxide Coordinates the Digestive and Protective Behavior of Lymnaea stagnalis, Vestsi NAS of Belarus, Ser. Biol. Navuk, 2002, no. 1, pp. 73–75.

  11. Porte, C., Sole, M., Albaiges, J., and Livingstone, D.R., Responses of Mixed-Function Oxygenase and Antioxidase Enzyme System of Mytilus sp. to Organic Pollution, Comp. Biochem. Physiol., 1991, vol. 100C, pp. 183–186.

    CAS  Google Scholar 

  12. Geret, F., Serafim, A., and Bebianno, M.J., Antioxidant Enzyme Activities, Metallothioneins and Lipid Peroxidation as Biomarkers in Ruditapes decussates, Ecotoxicol., 2003, vol. 12, pp. 417–426.

    Article  CAS  Google Scholar 

  13. Kostyuk, V.A. and Potapovich, A.I., SuperoxideDriven Oxidation of Quercetin and a Simple Assay for Determination of Superoxide Dismutase, Biochem. Int., 1989, vol. 19, pp. 1117–1124.

    PubMed  CAS  Google Scholar 

  14. Flohe, L. and Cunzler, W.A., Assays of Glutathione Peroxidase, Meth. Enzymol., 1984, vol. 105, pp. 114–126.

    Article  PubMed  CAS  Google Scholar 

  15. Habeeb, A.F., Reaction of Protein Sulfhydryl Groups with Ellman’s Reagent, Meth. Enzymol., 1972, vol. 25, pp. 457–464.

    Article  CAS  Google Scholar 

  16. Kostyuk, V.A. and Potapovich, A.I., Determination of Products of Lipid Peroxidation Using Thiobarbituric Acid under Anaerobic Conditions, Vopr. Med. Khim., 1987, vol. 33, pp. 115–118.

    CAS  Google Scholar 

  17. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  18. Hermes-Lima, M. and Storey, K.B., Antioxidant Defences and Metabolic Depression in a Pulmonate Land Snail, Am. J. Physiol., 1955, vol. 268, pp. 1386–1393.

    Google Scholar 

  19. Ramos-Vasconcelos, G.R. and Hermes-Lima, M., Hypometabolism, Antioxidant Defences and Free Radical Metabolism in the Pulmonate Land Snail Helix aspersa, J. Exp. Biol., 2003, vol. 206, pp. 675–684.

    Article  PubMed  CAS  Google Scholar 

  20. Santovito, G., Piccinni, E., Cassini, A., Irato, P., and Albergoni, V., Antioxidant Responses of the Mediterranean mussel, Mytilus galloprovincialis, to Environmental Variability of Dissolved Oxygen, Comp. Biochem. Physiol., 2005, vol. 140, pp. 321–329.

    Article  CAS  Google Scholar 

  21. Kobayashi, S., Sadamoto, H., Ogawa, H., Kitamura, Y., Oka, K., Tanishita, K., and Ito, E., Nitric Oxide Generation around Buccal Ganglia Accompanying Feeding Behaviour in the Pond Snail, Lymnaea stagnalis, Neurosci. Res., 2000, vol. 38, pp. 27–34.

    Article  CAS  Google Scholar 

  22. Faller, D.M. and Shields, D., Molekulyarnaya biologiys kletki (Molecular Biology of the Cell), Moscow, 2003.

  23. Zielinski, S. and Portner, H.O., Oxidative Stress and Antioxidative Defense in Cephalopods: A Function of Metabolic Rate or Age?, Comp. Biochem. Physiol., 2000, vol. 125B, pp. 147–160.

    CAS  Google Scholar 

  24. Han, Y.T., Han, Z.W., Yu, G.Y., Wang, Y.J., Cui, R.Y., and Wang, C.B., Inhibitory Effect of Polypeptide from Chlamys farreri on Ultraviolet AInduced Oxidative Damage on Human Skin Fibroblasts in vitro, Pharmacol. Res., 2004, vol. 49, pp. 256–274.

    Article  CAS  Google Scholar 

  25. Leng, B., Liu, X.D., and Chen, Q.X., Inhibitory Effects of Anti-Cancer Peptide from Mercenaria on the BGC-823 Cells and Several Enzymes, FEBS Lett., 2005, vol. 579, pp. 1187–1190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sidorov.

Additional information

Original Russian Text © A. V. Sidorov, G. T. Maslova, 2008, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2008, Vol. 44, No. 5, pp. 453–458.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorov, A.V., Maslova, G.T. State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system. J Evol Biochem Phys 44, 535–541 (2008). https://doi.org/10.1134/S0022093008050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093008050010

Key words

Navigation