Skip to main content
Log in

Peculiarities of Ca2+-regulation of functional activity of myocardium of frog Rana temporaria

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

To elucidate role of intra- and extracellular Ca2+ in regulation of rhythm and strength of frog heart contractions, there were studied ECC and isometric contraction of myocardium preparations in response to verapamil, adrenaline, and blockers of α- and β-adrenoreceptors. It has been shown that after an intramuscular injection of verapamil (6 mg/kg), bradycardia develops, the heart rate (HR) decreasing by 50–70%. Further, the cardiac arrest occurred; however, administration to the animals of adrenaline (100 mg/kg) restored the cardiac rhythm for a short while. After an intramuscular injection of adrenaline at doses of 0.1–10 mg/kg, no essential changes were observed in the potential action amplitude and HR; an increase of the administered adrenalin concentration to 100 mg/kg was not accompanied by the cardiac rhythm stimulation, as this takes place in homoiothermal animals and human; on the contrary, an essential HR deceleration was revealed. Phentolamine (5 mg/kg) gradually decelerated HR rhythm by 32–45%. The potential amplitude changed insignificantly. A subsequent intracardiac injection of adrenaline (100 mg/kg) on the background of block of α-adrenoreceptors produced acceleration of the rhythm (by 15–21%) and fall of the electrogram amplitude. These results can indicate that in the frog heart phentolamine interacts predominantly with α 1-adrenoreceptors. An intracardial administration of propranolol (1 mg/kg) to frogs promoted inhibition of β-adrenergic receptors and produced a gradual cardiac rhythm deceleration. In experiments on assessment of verapamil effect on the character of contractions this preparation at a concentration of 150 μM was established to produce a significant dose-dependent decrease of the contraction strength. A rise of verapamil concentration in the sample to 200 μM led to a decrease of the amplitude, on average, by 68–70% and in individual preparations—by 80–85%; however, administration into the sample of adrenaline (10 μM) restored the cardiac contraction strength. Adrenaline (1 nM–100 μM) increased markedly the contraction amplitude. Phentolamine (10 μM) did not inhibit transmission of contractile signal to cardiomyocytes; this was manifested in that the contraction amplitude after addition of adrenaline (10 μM) into the sample was approximately the same as in the sample containing no phentolamine. Propranolol (10 μM) eliminated the stimulatory action of adrenaline (10 μM). The results of these experiments indicate that in the frog ventricular cardiomyocytes the main adrenaline acceptors are β-adrenoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ringer, S., A Further Contribution Regarding the Influence of the Different Constituents of the Blood on the Contraction of the Heart, J. Physiol., 1883, vol. 4, pp. 29–47.

    CAS  PubMed  Google Scholar 

  2. Herzig, J.W., Calcium Ions and the Electromechanical Coupling of the Heart, Triangle, 1985, vol. 24, pp. 115–119.

    Google Scholar 

  3. Stern, M.D. and Lakatta, E.G., Excitation-Contracting Coupling in the Heart: The State of the Question, FASEB J., 1992, vol. 6, pp. 3092–3100.

    CAS  PubMed  Google Scholar 

  4. Zima, A.V. and Blatter, L.A., Inositol-1,4,5-Triphosphate-Dependent Ca2+-Signalling in Cat Atrial Excitation-Contraction Coupling and Arrhythmias, J. Physiol., 2004, vol. 555, pp. 607–615.

    Article  CAS  PubMed  Google Scholar 

  5. Saton., H., Sino-Atrial Nodal Cells of Mammalian Hearts: Ionic Currents and Gene Expression of Pacemaker Ionic Channels, J. Smooth Muscle Res., 2003, vol. 39, pp. 175–193.

    Article  Google Scholar 

  6. Bodi, I., Mikata, G., Koch, S.E., et al., The L-Type Calcium Channel in the Heart: the Beat Goes On, J. Clin. Invest., 2005, vol. 115, pp. 3306–3317.

    Article  CAS  PubMed  Google Scholar 

  7. Lupi, G.A., Urthaler, F., and James, T.N., Effects of Verapamil on Automaticity and Conduction with Particular Reference to Tachyphylaxis, Eur. J. Cardiol., 1979, vol. 9, pp. 345–368.

    CAS  PubMed  Google Scholar 

  8. Gilmour, R.F. and Zipes, D.P., Cellular Basis for Cardiac Arrhythmias, Cardiol. Clin., 1983, vol. 1, pp. 3–11.

    PubMed  Google Scholar 

  9. Mashkovskii, M.D., Lekarstvennye sredstva (Medical Drugs), Moscow, 2005.

  10. Sun, N., Hong, T., Zhang, R., and Yang, X., The Effects of Verapamil SR and Bisoprolol on Reducing the Sympathetic Nervous System’s Activity, Hypertens. Res., 2000, vol. 23, pp. 537–540.

    Article  CAS  PubMed  Google Scholar 

  11. Binggeli, C., Corti, R., Sudano, I., et al., Effects of Chronic Calcium Channel Blockade on Sympathetic Nerve Activity in Hypertension, Hypertension, 2002, vol. 39, pp. 892–896.

    Article  CAS  PubMed  Google Scholar 

  12. Magdalan, J., New Treatment Methods in Verapamil Poisoning: Experimental Studies, Pol. J. Pharmacol., 2003, vol. 55, pp. 425–432.

    CAS  PubMed  Google Scholar 

  13. Lipnitskii, T.N., Denisyuk, Yu.I., Kolesnik, P.F., et al., Clinical Efficiency of Verapamil on the Ventricular Extra-Systolic Arrhythmia and Parasystole, Terapevt. Arkhiv, 1993, vol. 65, pp. 42–44.

    CAS  Google Scholar 

  14. Satoh, H. and Tsuchida, K., Comparison of a Calcium Antagonist, CD-349, with Nifedipine, Ditiazem, and Verapamil in Rabbit Spontaneously Beating Sinoatrial Node Cells, J. Cardiovasc. Pharmacol., 1993, vol. 21, pp. 685–692.

    Article  CAS  PubMed  Google Scholar 

  15. Lipsius, S.L., Huser, J., and Blatter, L.A., Intracellular Ca2+ Release Sparks Atrial Pacemaker Activity, NIPS, 2001, vol. 16, pp. 101–106.

    CAS  PubMed  Google Scholar 

  16. Perez-Reyes, E., Molecular Physiology of Low-Voltage-Activated T-Type Calcium Channels, Physiol. Revol., 2003, vol. 83, pp. 117–161.

    CAS  Google Scholar 

  17. Vinogradova, T.M., Lyashkov, A.E., Zhu, W., et al., High Basal Protein Kinase A-Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells, Circ. Res., 2006, vol. 98, pp. 505–514.

    Article  CAS  PubMed  Google Scholar 

  18. Ju, Y.K. and Allen, D.G., How Does β-Adrenergic Stimulation Increase the Heart Rate? The Role of Intracellular Ca2+ Release in Amphibian Pacemaker Cells, J. Physiol., 1999, vol. 516, pp. 793–804.

    Article  CAS  PubMed  Google Scholar 

  19. Tunwell, R.E., Wickenden, C., Bertrand, B.M., et al., The Human Cardiac Muscle Ryanodine Receptor-Calcium Release Channel: Identification, Primary Structure and Topological Analysis, Biochem. J., 1996, vol. 318, pp. 477–487.

    CAS  PubMed  Google Scholar 

  20. Bramich, N.J., Edwards, F.R., and Hirst, G.D., Sympathetic Nerve Stimulation and Applied Transmitters on the Sinus Venosus of the Toad, J. Physiol., 1990, vol. 429, pp. 349–375.

    CAS  PubMed  Google Scholar 

  21. Edwards, F.R., Bramich, N.J., and Hirst, G.D., Analysis of the Effects of Vagal Stimulation on the Sinus Venosus of the Toad, Philos. Trans. R. Soc. (London), 1993, vol. 341B, pp. 149–162.

    Article  Google Scholar 

  22. Lubbe, W.F., Podzuweit, T., and Opie, L.H., Potential Arrhythmogenic Role of Calcium Adenosine Monophosphate (AMP) and Cytosolic Calcium Overload: Implications for Prophilactic Effects of Beta-Blockers in Myocardial Infarction and Proarrhythmic Effects of Phosphodiesterase Inhibitors, J. Am. Coll. Cardiol., 1992, vol. 19, pp. 1622–1633.

    Article  CAS  PubMed  Google Scholar 

  23. Porotikov, I.V., Cherepshchikova, E.A., Fillipov, A.K., et al., Study of Role of Transmembrane Ion Currents in Mechanism of the Adrenoreceptor Effect, Byull. Exp. Biol. Med., 1984, vol. 97, pp. 677–679.

    CAS  Google Scholar 

  24. Trishkin, S.B., The Efficiency of Endogenous Modulation of b-Adrenoreceptors and Cholinoreceptors on the Cardiac Rhythm Variability, Dokl. RAN, 2004, vol. 394, pp. 16–19.

    Google Scholar 

  25. Bramich, N.J., Brock, J.A., Edwards, F.R., and Hirst, G.D., Responses to Sympathetic Nerve Stimulation of the Sinus Venosus of the Toad, J. Physiol., 1993, vol. 461, pp. 403–430.

    CAS  PubMed  Google Scholar 

  26. De Pauw, M., Vilaine, J.P., and Heyndrickx, G.R., Role of Force-Frequency Relation during AV-Block, Sinus Node Block and Beta-Adrenoreceptor Block in Conscious Animals, Basic Res. Cardiol., 2004, vol. 99, pp. 360–371.

    Article  PubMed  Google Scholar 

  27. Cousins, H.M., and Bramich, N.J., Effects of Sympathetic Nerve Stimulation on Membrane Potential, [Ca2+]i and Force in the Arrested Sinus Venosus of the Toad, Bufo marinus, J. Physiol., 1997, vol. 505, pp. 513–527.

    Article  CAS  PubMed  Google Scholar 

  28. Maltsev, V.A., Vinogradova, T.M., and Lakatta, E.G., The Emergence of a General Theory of the Initiation and Strength of the Heartbeat, J. Pharmacol. Sci., 2006, vol. 100, pp. 338–369.

    Article  CAS  PubMed  Google Scholar 

  29. Shuba, Y.M., Iwata, T., Naidenov, V.G., et al., A Novel Molecular Determinant for cAMP-Dependent Regulation of the Heart Na+, Ca2+-Exchanger, J. Biol. Chem., 1998, vol. 273, pp. 18 819–18 825.

    Article  CAS  Google Scholar 

  30. Demina, I.N., Matveev, V.V., and Nesterov, V.P., Hydrophobic Interactions as the Basis of Inotropic Effect of Verapamil, Tsitologia, 1997, vol. 39, pp. 719–726.

    CAS  Google Scholar 

  31. Catterall, W.A., Voltage-Gated Ca2+ Channels, Handbook of Cell Signaling, 2004, vol. 2, pp. 23–30.

    Article  CAS  Google Scholar 

  32. Page, S.G. and Niedergerke, R., Structures of Physiological Interest in the Frog Heart Ventricle, J. Cell Sci., 1972, vol. 11, pp. 179–203.

    CAS  PubMed  Google Scholar 

  33. Song, L.S., Guia, A., Muth, J.N., et al., Ca2+ Signaling in Cardiac Myocytes Overexpressing the Alpha 1 Subunit of L-Type Ca2+ Channel, Circ. Res., 2002, vol. 90, pp. 174–181.

    Article  CAS  PubMed  Google Scholar 

  34. Leone, M., Albanese, J., and Martin, C., Positive Inotropic Stimulation, Curr. Opin. Crit. Care, 2002, vol. 8. pp. 395–401.

    Article  PubMed  Google Scholar 

  35. Baker, W.W. and Baker, J.M., Antagonism on Inotropic Responses of Frog Heart to Epinephrine and Acetylcholine, Proc. Soc. Exp. Biol. Med., 1954, vol. 86, pp. 719–724.

    CAS  PubMed  Google Scholar 

  36. Protas, L., Inotropic Action of Adrenergic Substances on the Heart Ventricle in the course of Ontogenesis of the Frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 1990, vol. 26, pp. 167–173.

    CAS  PubMed  Google Scholar 

  37. Lazou, A., Gaitanaki, C., Vaxevanellis, S., and Pehtelidou, A., Identification of Alpha1-Adrenergic Receptors and Their Involvement in Phosphoinositide Hydrolysis in the Frog Heart, J. Exp. Zool., 2002, vol. 293, pp. 99–105.

    Article  CAS  PubMed  Google Scholar 

  38. Singh, J. and Flitney, F.W., Effects of Exogenous Neurotransmitters on Contractility and Cyclic Nucleotide Metabolism in the Isolated Frog Ventricle, Biochem. Pharmacol., 1983, vol. 32, pp. 1169–1174.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I. V. Shemarova, S. V. Kuznetsov, I. N. Demina, V. P. Nesterov, 2008, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2008, Vol. 44, No. 1, pp. 39–50.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shemarova, I.V., Kuznetsov, S.V., Demina, I.N. et al. Peculiarities of Ca2+-regulation of functional activity of myocardium of frog Rana temporaria . J Evol Biochem Phys 44, 44–57 (2008). https://doi.org/10.1134/S0022093008010064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093008010064

Key words

Navigation