Skip to main content
Log in

ANALYSIS OF THE MHD FLOW OF IMMISCIBLE FLUIDS WITH VARIABLE VISCOSITY IN AN INCLINED CHANNEL

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The aim of the present work is to examine the flow of electrically conducting immiscible Newtonian fluids with variable viscosity through an inclined channel under the influence of a magnetic field. The flow is generated because of a constant pressure gradient. The flow in an inclined channel is governed by the Navier–Stokes equations. Analytical expressions for the velocity, flow rate, and stress are derived. The influence of various parameters of the problem on the flow characteristics is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. M. Devakar, A. Raje, and S. Kumar, “Numerical Study on an Unsteady Flow of an Immiscible Micropolar Fluid Sandwiched between Newtonian Fluids Through a Channel," J. Appl. Mech. Tech. Phys. 59 (6), 980–991 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. Srinivas and J. V. Ramana Murthy, “Thermal Analysis of a Flow of Immiscible Couple Stress Fluids in Channel," J. Appl. Mech. Tech. Phys. 57 (6), 997–1005 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. H. Jeffreys, “The Flow of Water in an Inclined Channel of Rectangular Section," London, Edinburgh, Dublin Philos. Mag. J. Sci. 49 (293), 793–807 (1925).

    Article  MATH  Google Scholar 

  4. E. N. Zhuravleva, “Viscous Fluid Flow in a Layer with a Free Boundary," J. Appl. Mech. Tech. Phys. 63 (3), 383–391 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. O. K. Matar, G. M. Sisoev, and C. J. Lawrence, “Two-Layer Flow with One Viscous Layer in Inclined Channels," Math. Modell. Natur. Phenomena 3 (1), 126–148 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Prakash, “Liquid Flowing Down an Open Inclined Channel," Indian J. Pure Appl. Math. 2, 1093–1109 (1970).

    Google Scholar 

  7. P. K. Yadav, P. Singh, A. Tiwari, and S. Deo, “Stokes Flow Through a Membrane Built up by Non-Homogeneous Porous Cylindrical Particles," J. Appl. Mech. Tech. Phys. 60 (5), 816–826 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. O. D. Makinde and A. W. Gbolagade, “Second Law Analysis of Incompressible Viscous Flow Through an Inclined Channel with Isothermal Walls," Roman. J. Phys. 50 (9/10), 923–930 (2005).

    Google Scholar 

  9. B. N. Goncharenko and A. L. Urintsev, “Stability of Flow of a Viscous Liquid Down an Inclined Plane," J. Appl. Mech. Tech. Phys. 16 (2), 293–296 (1975).

    Article  ADS  Google Scholar 

  10. V. K. Verma and S. Datta, “Magnetohydrodynamic Flow in a Channel with Varying Viscosity under Transverse Magnetic Field," Adv. Theor. Appl. Mech. 3 (2), 53–66 (2010).

    MATH  Google Scholar 

  11. H. A. Attia, “Unsteady Flow of a Dusty Conducting Fluid between Parallel Porous Plates with Temperature Dependent Viscosity," Turkish J. Phys. 29 (4), 257–267 (2005).

    ADS  Google Scholar 

  12. A. Tiwari and S. S. Chauhan, “Effect of Varying Viscosity on a Two-Layer Model of the Blood Flow Through Porous Blood Vessels," Europ. Phys. J. Plus. 134 (1), 1–41 (2019).

    Article  ADS  Google Scholar 

  13. A. Tiwari and S. S. Chauhan, “Effect of Varying Viscosity on Two-Layer Model of Pulsatile Flow Through Blood Vessels with Porous Region Near Walls," Transport Porous Media 129 (3), 721–741 (2019).

    Article  MathSciNet  Google Scholar 

  14. R. X. Dai, Q. Dong, and A. Z. Szeri, “Flow of Variable Viscosity Fluid between Eccentric Rotating Cylinders," Intern. J. Non-linear Mech. 27 (3), 367–389 (1992).

    Article  ADS  MATH  Google Scholar 

  15. E. Meiburg, S. H. Vanaparthy, M. D. Payr, and D. Wilhelm, “Density-Driven Instabilities of Variable-Viscosity Miscible Fluids in a Capillary Tube," Ann. NY Acad. Sci. 1027 (1), 383–402 (2004).

    Article  ADS  Google Scholar 

  16. A. Ishak, R. Nazar, and I. Pop, “Magnetohydrodynamic (MHD) Flow and Heat Transfer due to a Stretching Cylinder," Energy Convers. Management. 49 (11), 3265–3269 (2008).

    Article  MATH  Google Scholar 

  17. K. Prathap and J. C. Umavathi, “Dispersion of a Solute in Hartmann Two-Fluid Flow between Two Parallel Plates," Applicat. Appl. Math. 8 (2), 436–464 (2013).

    MathSciNet  MATH  Google Scholar 

  18. H. A. Attia, A. M. A. Al-Kaisy, and K. M. Ewis, “MHD Couette Flow and Heat Transfer of a Dusty Fluid with Exponential Decaying Pressure Gradient," J. Appl. Sci. Engng. 14 (2), 91–96 (2011).

    Google Scholar 

  19. W. A. Manyonge, D. W. Kiema, and C. C. W. Iyaya, “Steady MHD Poiseuille Flow between Two Infinite Parallel Porous Plates in an Inclined Magnetic Field," Intern. J. Pure Appl. Math. 76 (2), 661–668 (2012).

    Google Scholar 

  20. P. K. Yadav and S. Jaiswal, “Influence of an Inclined Magnetic Field on the Poiseuille Flow of Immiscible Micropolar Newtonian Fluids in a Porous Medium," Canad. J. Phys. 96 (9), 1016–1028 (2018).

    Article  ADS  Google Scholar 

  21. P. K. Yadav, S. Jaiswal, and J. Y. Puchakatla, “Micropolar Fluid Flow Through the Membrane Composed of Impermeable Cylindrical Particles Coated by Porous Layer under the Effect of Magnetic Field," Math. Methods Appl. Sci. 43 (4), 1925–1937 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. K. P. Madasu and T. Bucha, “Effect of Magnetic Field on the Slow Motion of a Porous Spheroid: Brinkman’s Model," Arch. Appl. Mech. 91 (4), 1739–1755 (2021).

    Article  ADS  Google Scholar 

  23. S. Jaiswal and P. K. Yadav, “A Micropolar-Newtonian Blood Flow Model Through a Porous Layered Artery in the Presence of a Magnetic Field," Phys. Fluids 31 (7), 071901 (2019).

    Article  ADS  Google Scholar 

  24. P. K. Yadav and A. K. Verma, “Analysis of Immiscible Newtonian and non-Newtonian Micropolar Fluid Flow Through Porous Cylindrical Pipe Enclosing a Cavity," Europ. Phys. J. Plus. 135 (8), 1–35 (2020).

    Article  Google Scholar 

  25. J. B. Shukla, R. S. Parihar, B. R. P. Rao, and S. P. Gupta, “Effects of Peripheral-Layer Viscosity on Peristaltic Transport of a Bio-Fluid," J. Fluid Mech. 97 (2), 225–237 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Haber and H. Brenner, “Inhomogeneous Viscosity Fluid Flow in a Wide-Gap Couette Apparatus: Shear-Induced Migration in Suspensions," Phys. Fluids 12 (12), 3100–3111 (2000).

    Article  ADS  MATH  Google Scholar 

  27. M. Thiele, “Stationary Transverse Diffusion in a Horizontal Porous Medium Boundary-Layer Flow with Concentration-Dependent Fluid Density and Viscosity," Transport Porous Media 36, 341–355 (1999).

    Article  MathSciNet  Google Scholar 

  28. J. R. Murthy and J. Srinivas, “Second Law Analysis for Poiseuille Flow of Immiscible Micropolar Fluids in a Channel," Intern. J. Heat Mass Transfer 65, 254–264 (2013).

    Article  Google Scholar 

  29. S. Jangili and J. Murthy, “Thermodynamic Analysis for the MHD Flow of Two Immiscible Micropolar Fluids between Two Parallel Plates," Frontiers Heat Mass Transfer 6 (1), 1–11 (2015).

    Article  Google Scholar 

  30. A. Nezhad and M. Shahri, “Entropy Generation Case Studies of Two-Immiscible Fluids under the Influence of a Uniform Magnetic Field in an Inclined Channel," J. Mech. 32 (6), 749–757 (2016).

    Article  Google Scholar 

  31. M. S. Malashetty, J. C. Umavathi, and J. P. Kumar, “Two Fluid Flow and Heat Transfer in an Inclined Channel Containing Porous and Fluid Layer," Heat Mass Transfer 40, 871–876 (2004).

    Article  ADS  Google Scholar 

  32. R. Shail, “On Laminar Two-Phase Flows in Magnetohydrodynamics," Intern. J. Engng Sci. 11 (10), 1103–1108 (1973).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Yadav.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 4, pp. 76-86. https://doi.org/10.15372/PMTF20230407.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Verma, A.K. ANALYSIS OF THE MHD FLOW OF IMMISCIBLE FLUIDS WITH VARIABLE VISCOSITY IN AN INCLINED CHANNEL. J Appl Mech Tech Phy 64, 618–627 (2023). https://doi.org/10.1134/S0021894423040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423040077

Keywords

Navigation