Skip to main content
Log in

INFLUENCE OF SINUSOIDAL PERTURBATIONS IN THE DISPERSED PHASE FLOW RATE ON THE FLOW CHARACTERISTICS OF IMMISCIBLE VISCOUS LIQUIDS IN A T-JUNCTION MICROCHANNEL

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The influence of sinusoidal pulsations in the dispersed phase flow rate on the flow characteristics of immiscible high-viscosity liquids in a T-junction microchannel was studied. The flow regimes in the unperturbed flow and in the flow subjected to external perturbations with different frequencies and amplitudes were visualized. A dimensionless complex is proposed that describes the transition from parallel to plug flow due to external perturbations for a fixed capillary number of the carrier phase. The application of perturbations to the plug flow regime was found to lead to flow stabilization and to a reduction in the range of lengths of the generated plugs at a frequency equal to the natural frequency of plug formation in the unperturbed flow. The average plug length and the range of its values are shown to increase with decreasing perturbation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. A. Abdollahi, R. N. Sharma, and A. Vatani, “Fluid Flow and Heat Transfer of Liquid–Liquid Two Phase Flow in Microchannels: A Review," Intern. Comm. Heat Mass Transfer 84, 66–74 (2017); DOI: 10.1016/j.icheatmasstransfer.2017.03.010.

    Article  Google Scholar 

  2. A. Suea-Ngam, P. D. Howes, M. Srisa-Art, and A. J. Demello, “Droplet Microfluidics: From Proof-of-Concept to Real-World Utility?", Chem. Comm. 55 (67), 9895–9903 (2019); DOI: 10.1039/c9cc04750f.

    Article  Google Scholar 

  3. K. Wang, L. Li, P. Xie, and G. Luo, “Liquid–Liquid Microflow Reaction Engineering," Reaction Chem. Engng. 2 (5), 611–627 (2017); DOI: 10.1039/c7re00082k.

    Article  Google Scholar 

  4. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-Up," Lab Chip. 6 (3), 437–446 (2006); DOI: 10.1039/b510841a.

    Article  Google Scholar 

  5. J. H. Xu, S. W. Li, J. Tan, and G. S. Luo, “Correlations of Droplet Formation in T-Junction Microfluidic Devices: From Squeezing to Dripping," Microfluidics Nanofluidics 5 (6), 711–717 (2008); DOI: 10.1007/s10404-008-0306-4.

    Article  Google Scholar 

  6. A. V. Kovalev, A. A. Yagodnitsyna, and A. V. Bilsky, “Experimental Study of Liquid–Liquid Plug Flow in a T-Shaped Microchannel," J. Phys.: Conf. Ser. 754 (9), 92001 (2016); DOI: 10.1088/1742-6596/754/9/092001.

    Article  Google Scholar 

  7. P. M. Korczyk, van V. Steijn, S. Blonski, et al., “Accounting for Corner Flow Unifies the Understanding of Droplet Formation in Microfluidic Channels," Nature Comm. 10 (1), 1–9 (2019); DOI: 10.1038/s41467-019-10505-5.

    Article  ADS  Google Scholar 

  8. Z. Nie, M. S. Seo, S. Xu, et al., “Emulsification in a Microfluidic Flow-Focusing Device: Effect of the Viscosities of the Liquids," Microfluidics Nanofluidics 5 (5), 585–594 (2008); DOI: 10.1007/s10404-008-0271-y.

    Article  Google Scholar 

  9. F. L. Lih and J. M. Miao, “Effect of Junction Configurations on Microdroplet Formation in a T-Junction Microchannel," Prikl. Mekh. Tekh. Fiz. 56 (2), 63–75 (2015) [J. Appl. Mech. Tech. Phys. 56 (2) 20–230 (2015); https://doi.org/10.1134/S0021894415020078].

    Article  Google Scholar 

  10. P. Zhu and L. Wang, “Passive and Active Droplet Generation with Microfluidics: A Review," Lab Chip. 17 (1), 34–75 (2017); DOI: 10.1039/C6LC01018K.

    Article  Google Scholar 

  11. A. Bransky, N. Korin, M. Khoury, and S. Levenberg, “A Microfluidic Droplet Generator Based on a Piezoelectric Actuator," Lab Chip. 9 (4), 516–520 (2009); DOI: 10.1039/b814810d.

    Article  Google Scholar 

  12. J. Xu and D. Attinger, “Drop on Demand in a Microfluidic Chip," J. Micromech. Microengng. 18 (6), 65020 (2008); DOI: 10.1088/0960-1317/18/6/065020.

    Article  Google Scholar 

  13. Y. N. Cheung and H. Qiu, “Characterization of Acoustic Droplet Formation in a Microfluidic Flow-Focusing Device," Phys. Rev. E. Statistic.", Nonlinear, Soft Matter Phys. 84 (6), 1–10 (2011); DOI: 10.1103/PhysRevE.84.066310.

    Article  Google Scholar 

  14. I. Ziemecka, V. Van Steijn, and G. J. M. Koper, et al., “Monodisperse Hydrogel Microspheres by Forced Droplet Formation in Aqueous Two-Phase Systems," Lab Chip. 11 (4), 620–624 (2011); DOI: 10.1039/c0lc00375a.

    Article  Google Scholar 

  15. B. U. Moon, S. G. Jones, D. K. Hwang, and S. S. H. Tsai, “Microfluidic Generation of Aqueous Two-Phase System (ATPS) Droplets by Controlled Pulsating Inlet Pressures," Lab Chip. 15 (11), 2437–2444 (2015). DOI: 10.1039/c5lc00217f.

    Article  Google Scholar 

  16. Y. Zhang, J. Zhang, Z. Tang, and Q. Wu, “Regulation of Gas-Liquid Taylor Flow by Pulsating Gas Intake in Micro-Channel," Chem. Engng J. 417, 129055 (2021); DOI: 10.1016/j.cej.2021.129055.

    Article  Google Scholar 

  17. A. A. Yagodnitsyna, A. V. Kovalev, and A. V. Bilsky, “Flow Patterns of Immiscible Liquid–Liquid Flow in a Rectangular Microchannel with T-Junction," Chem. Engng J. 303, 547–554 (2016); DOI: 10.1016/j.cej.2016.06.023.

    Article  Google Scholar 

  18. J. Bechhoefer, “Feedback for Physicists: A Tutorial Essay on Control," Rev. Modern Phys. 77 (3), 783–836 (2005); DOI: 10.1103/RevModPhys.77.783.

    Article  ADS  Google Scholar 

  19. J. R. Womersley, “Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known," J. Physiology 127 (3), 553–563 (1955); DOI: 10.1113/ jphysiol.1955.sp 5276

    Article  Google Scholar 

  20. J. M. Montanero and A. M. Gañán-Calvo, “Dripping, Jetting and Tip Streaming," Rep. Progr. Phys. 83, 97001 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kovalev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 3, pp. 20-31. https://doi.org/10.15372/PMTF20230303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A.V., Yagodnitsyna, A.A. & Bilsky, A.V. INFLUENCE OF SINUSOIDAL PERTURBATIONS IN THE DISPERSED PHASE FLOW RATE ON THE FLOW CHARACTERISTICS OF IMMISCIBLE VISCOUS LIQUIDS IN A T-JUNCTION MICROCHANNEL. J Appl Mech Tech Phy 64, 378–387 (2023). https://doi.org/10.1134/S0021894423030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423030033

Keywords

Navigation