Skip to main content
Log in

NUMERICAL SIMULATION STUDY OF THE FLUID–STRUCTURE INTERACTION OF THE ARTERY UNDER PERIODIC EXTERNAL FORCING OF MASSAGE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The impact of vibrating manipulation on arterial hemodynamics and mechanical properties is explored by using the finite element method for the fluid–structure interaction. Numerical simulation results show that massage greatly changes the flow behavior of blood within the artery. Under the massage manipulation, the mean blood flow increases by more than 5.34% at a frequency of \(2f_0\) and by smaller values at frequencies of \(f_0\) and \(4f_0\). The blood flow has obvious disorder characteristics and an obvious wall shear stress concentration in the mixed flow area. The von Mises stress of the artery wall increases, reaching a peak value at the maximum deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. J. C. Tsao, “Effectiveness of Massage Therapy for Chronic, Non-Malignant Pain: A Review," Evidence-Based Complement. Alternative Medicine 4 (2), 165–179 (2007).

    Article  Google Scholar 

  2. N. Elibol and U. Cavlak, “Massage Therapy in Chronic Musculoskeletal Pain Management: A Scoping Review of the Literature," Medicina Sportiva: J. Roman. Sports Medicine Soc. 15 (1), 3067–3073 (2019).

    Google Scholar 

  3. A. D. Furlan, L. Brosseau, M. Imamura, and E. Irvin, “Massage for Low-Back Pain: a Systematic Review within the Framework of the Cochrane Collaboration Back Review Group," Spine 27 (17), 1896–1910 (2002).

    Article  Google Scholar 

  4. H. H. Yi, X. H. Wu, and Y. L. Yao, “Dynamics of the Blood Flow in the Curved Artery with the Rolling Massage," Int. J. Comput. Fluid Dyn. 25 (9), 501–507 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. H. Yi, “Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation," Int. J. Modern Phys. C 21 (11), 1421–1431 (2011).

    Article  ADS  MATH  Google Scholar 

  6. V. M. Tverier, I. D. Shitoev, and Y. I. Nyashin, “Biomechanical Modelling of the Temporomandibular Joint Forces Influence on the Internal Carotid Artery," Russ. J. Biomech. 24 (3), 370–389 (2020).

    Google Scholar 

  7. T. Gamilov and S. Simakov, “Blood Flow under Mechanical Stimulations," Adv. Intell. Syst. Comput. 1028, 143–150 (2020).

    Google Scholar 

  8. H. L. Tan, F. R. Kong, K. Z. Bai, and L. J. Kong, “Lattice Boltzmann Simulation of Effect of Rolling Manipulation of Traditional Chinese Massage on Blood Flow," Appl. Mech. Mater. 2212, 472–477 (2013).

    Article  Google Scholar 

  9. H. L. Tan, K. Z. Bai, F. R. Kong, et al., “Study on the Blood Flow with Rolling Manipulation of Traditional Chinese Massage," Appl. Mech. Mater. 477/478, 197–202 (2013).

    Article  Google Scholar 

  10. M. H. Amiri, A. Keshavarzi, A. Karimipour, et al., “A 3-D Numerical Simulation of non-Newtonian Blood Flow through Femoral Artery Bifurcation with a Moderate Arteriosclerosis: Investigating Newtonian/non-Newtonian Flow and its Effects on Elastic Vessel Walls," Heat Mass Transfer. 55 (7), 2037–2047 (2019).

    Article  ADS  Google Scholar 

  11. A. J. Y. Chee, C. K. Ho, B. Y. S. Yiu, and A. C. H. Yu, “Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics," IEEE Trans. Ultrason., Ferroelectr., Frequency Control. 63 (11), 1852–1864 (2016).

    Article  Google Scholar 

  12. K. Hajirayat, S. Gholampour, I. Sharifi, and D. Bizari, “Biomechanical Simulation to Compare the Blood Hemodynamics and Cerebral Aneurysm Rupture Risk in Patients with Different Aneurysm Necks," Prikl. Mekh. Tekh. Fiz. 58 (6), 16–22 (2017) [J. Appl. Mech. Tech. Phys. 58 (6), 968–974 (2017); DOI: 10.1134/S0021894417060025].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Yu. Mamatyukov, A. K. Khe, D. V. Parshin and, A. P. Chupakhin, “Energy Approach to the Solution of the Hydroelastic Problem of Diverticulum Growth on Fusiform Aneurysm," Prikl. Mekh. Tekh. Fiz. 61 (5), 211–223 (2020) [J. Appl. Mech. Tech. Phys. 61 (5), 866–877 (2020); DOI: 10.1134/S0021894420050223].

    Article  ADS  Google Scholar 

  14. C. Yang, R. G. Bach, J. Zheng, et al., “In Vivo IVUS-Based 3-D Fluid–Structure Interaction Models with Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis," IEEE Trans. Biomed. Eng. 56 (10), 2420–2428 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Li.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 2, pp. 10-17. https://doi.org/10.15372/PMTF20230202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y.Q., Li, M.L. & Li, L.P. NUMERICAL SIMULATION STUDY OF THE FLUID–STRUCTURE INTERACTION OF THE ARTERY UNDER PERIODIC EXTERNAL FORCING OF MASSAGE. J Appl Mech Tech Phy 64, 183–189 (2023). https://doi.org/10.1134/S0021894423020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423020025

Keywords

Navigation