Skip to main content
Log in

REPRODUCIBILITY AND REPEATABILITY OF THE RESULTS OF STRAIN GAUGE CONTROL OF THE TREAD OF MOVING WAGON WHEELS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The paper presents the results of tests of a system for monitoring the tread of moving freight car wheelsets using dynamic strain gauge. The studies were carried out at a test ring under the conditions of multiple repetition of train load to evaluate the reproducibility of the results of strain gauge measurements. During each passage of the train through the measuring section, the high-speed system with a sampling frequency of 64 kHz measured the strain of the rail web caused by the impact of the wheels of the rolling stock. A specially developed software was used to automatically detect defective wheels from the obtained data and determine the dynamic force of wheel impact on the rail. The repeatability of strain gauge measurements was evaluated by comparing them with the results of visual and measuring control of the rolling stock conducted before the beginning of the tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. S. Jia and M. Dhanasekar, “Detection of Rail Wheel Flats Using Wavelet Approaches," Structur. Health Monitor. 6 (2), 121–131 (2007); DOI: 10.1177/1475921706072066.

    Article  Google Scholar 

  2. M. Bogdevicius, R. Zygiene, G. Bureika, et al., “An Analytical Mathematical Method for Calculating the Dynamic Wheel—Rail Impact Force Caused by Wheel Flat," Vehicle System Dynamics 54 (5), 689–705 (2016); DOI: 10.1080/00423114.2016.1153114.

    Article  ADS  Google Scholar 

  3. E. Bernal, M. Spiryagin, and C. Cole, “Wheel Flat Detectability for Y25 Railway Freight Wagon Using Vehicle Component Acceleration Signals," Vehicle System Dynamics 58 (12), 1893–1913 (2020); DOI: 10.1080/00423114.2019.1657155.

    Article  ADS  Google Scholar 

  4. H. Salzburger, M. Schuppmann, W. Li, et al., “In-Motion Ultrasonic Testing of the Tread of High-Speed Railway Wheels Using the Inspection System AUROPA III," Insight: Non-Destruct. Test. Condit. Monitor. 51 (7), 370–372 (2009); DOI: 10.1784/insi.2009.51.7.370.

    Article  Google Scholar 

  5. J. Brizuela, A. Ibañez, P. Nevado, et al., “Railway wheels Flat Detector Using Doppler Effect," Phys. Procedia 3 (1), 811–817 (2010); DOI: 10.1016/j.phpro.2010.01.104.

    Article  ADS  Google Scholar 

  6. H. A. Otorabad, P. H. Tehrani, and D. Younesian, “3D Transient Elasto-Plastic Finite Element Analysis of a Flatted Railway Wheel in Tread Contact," Mech. Based Design Structures Machines 46 (6), 751–766 (2018); DOI: 10.1080/15397734.2018.1457446.

    Article  Google Scholar 

  7. R. V. Dukkipati and R. Dong, “Impact Loads Due to Wheel Flats and Shells," Vehicle System Dynamics 31 (1), 1–22 (1999); DOI: 10.1076/vesd.31.1.1.2097.

    Article  Google Scholar 

  8. B. Stratman, Y. Liu, and S. Mahadevan, “Structural Health Monitoring of Railroad Wheels Using Wheel Impact Load Detectors," J. Failure Anal. Prevent. 7 (3), 218–225 (2007); DOI: 10.1007/s11668-007-9043-3.

    Article  Google Scholar 

  9. C. Zhou, L. Gao, H. Xiao, et al., “Railway Wheel Flat Recognition and Precise Positioning Method Based on Multisensor Arrays," Appl. Sci. 10 (4), 1297 (2020); DOI: 10.3390/app10041297.

    Article  Google Scholar 

  10. A. Mosleh, P. Montenegro, P. A. Costa, et al., “An Approach for Wheel Flat Detection of Railway Train Wheels Using Envelope Spectrum Analysis," Structure Infrastructure Eng. 17 (12), 1710–1729 (2020); DOI: 10.1080/15732479.2020.1832536.

    Article  Google Scholar 

  11. Y. Ye, D. Shi, P. Krause, et al., “A Data-Driven Method for Estimating Wheel Flat Length," Vehicle System Dynamics 58 (9), 1329–1347 (2020); DOI: 10.1080/00423114.2019.1620956.

    Article  ADS  Google Scholar 

  12. T. Nowakowski, P. Komorski, G. M. Szymanski, et al., “Wheel-Flat Detection on Trams Using Envelope Analysis with Hilbert Transform," Latin Amer. J. Solids Structures 16 (1), 1–16; DOI: 10.1590/1679-78255010.

    Article  Google Scholar 

  13. Y. Li, M. J. Zuo, J. Lin, et al., “Fault Detection Method for Railway Wheel Flat Using an Adaptive Multiscale Morphological Filter," Mech. Systems Signal Process. 84, 642–658 (2017); DOI: 10.1016/j.ymssp.2016.07.009.

    Article  ADS  Google Scholar 

  14. D. Shi, Y. Ye, M. Gillwald, et al., “Designing a Lightweight 1D Convolutional Neural Network with Bayesian Optimization for Wheels Detection Using Carbody Accelerations," Intern. J. Rail Transport. 9 (4), 311–341 (2021); DOI: 10.1080/23248378.2020.1795942.

    Article  Google Scholar 

  15. R. D. Fröhling, “Wheel/rail Interface Management in Heavy Haul Railway Operations-Applying Science and Technology," Vehicle System Dynamics 45 (7/8), 649–677 (2007); DOI: 10.1080/00423110701413797.

    Article  Google Scholar 

  16. K. K. Yuen, “Novel Application of a Fiber Optic-Based Train Weigh-In-Motion System in Railway," HKIE Trans. 21 (4), 272–280 (2014); DOI: 10.1080/1023697X.2014.970752.

    Article  Google Scholar 

  17. K. Bollas, D. Papasalouros, A. Anastasopoulos, et al., “Acoustic Emission Inspection of Rail Wheels," J. Acoust. Emiss. 28, 215–228 (2010).

    Google Scholar 

  18. M. L. Filograno, P. Corredera, M. Rodrı́guez-Plaza, et al., “Wheel Flat Detection in High-Speed Railway Systems Using Fiber Bragg Gratings," IEEE Sensors J. 13 (12, N 6563101), 4808–4816 (2013); DOI: 10.1109/JSEN.2013.2274008.

    Article  ADS  Google Scholar 

  19. J. Brizuela, C. Fritsch, and A. Ibáñez, “Railway Wheel-Flat Detection and Measurement by Ultrasound," Transport. Res. Pt C. Emerg. Technol. 19 (6), 975–984 (2011); DOI: 10.1016/j.trc.2011.04.004.

    Article  Google Scholar 

  20. P. Kundu, A. K. Darpe, S. P. Singh, et al., “Review on Condition Monitoring Technologies for Railway Rolling stock," Proc. Europ. Conf. PHM Soc. 4 (1), 1–15 (2018).

  21. L. N. Stepanova, S. I. Kabanov, S. A. Bekher, et al., “Microprocessor Multichannel Strain-Gauge Systems for Dynamic Tests of Structures," Autom. Remote Control. 74 (5), 891–897 (2013); DOI: 10.1134/S0005117913050135.

    Article  Google Scholar 

  22. S. A. Bekher and A. O. Kolomeets, “Increasing the Reliability of Quality Control of the Wheels of Freight Cars in Motion Using Digital Data Processing," Russ. J. Nondestruct. Test., 51 (3), 179–184 (2015); DOI: 10.1134/S1061830915030031.

    Article  Google Scholar 

  23. Z. Yuqing, Z. Geming, Z. Yan, et al., “Linear State Method for Continuous Measurement of Wheel/Rail Vertical Force on Ground," China Rail. Sci. 36 (6), 111–119 (2015); DOI: 10.3969/j.issn.1001-4632.2015.06.16.

  24. B. Liang, S. D. Iwnicki, Y. Zhao, et al., “Railway Wheel-Flat and Rail Surface Defect Modeling and Analysis by Time-Frequency Techniques," Vehicle System Dynamics 51 (9), 1403–1421 (2013); DOI: 10.1080/00423114.2013.804192.

    Article  ADS  Google Scholar 

  25. V. Belotti, F. Crenna, R. C. Michelini, et al., “Wheel-Flat Diagnostic Tool via Wavelet Transform," Mech. Systems Signal Process. 20 (8), 1953–1966 (2006); DOI: 10.1016/j.ymssp.2005.12.012.

    Article  ADS  Google Scholar 

  26. Z. Zhang, S. Wei, B. Andrawes, et al., “Numerical and Experimental Studies on Dynamic Behavior of Concrete Sleeper Track Caused by Wheel Flat," Intern. J. Rail Transport. 4 (1), 1–19 (2016); DOI: 10.1080/23248378.2015.1123657.

    Article  Google Scholar 

  27. M. Steenbergen, “The Role of the Contact Geometry in Wheel-Rail Impact Due to Wheel Flats: Pt 2," Vehicle System Dynamics 46 (8), 713–737 (2008); DOI: 10.1080/00423110701584027.

    Article  Google Scholar 

  28. R. Gao, Q. He, and Q. Feng, “Railway Wheel Flat Detection System Based on a Parallelogram Mechanism," Sensors 19 (16), 3614; DOI: 10.3390/s19163614 (2019).

    Article  ADS  Google Scholar 

  29. L. Jing and L. Han, “Further Study on the Wheel-Rail Impact Response Induced by a Single Wheel Flat: the Coupling Effect of Strain Rate and Thermal Stress," Vehicle System Dynamics 55 (12), 1946–1972 (2017); DOI: 10.1080/00423114.2017.1340651.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Vyplaven.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 195-206. https://doi.org/10.15372/PMTF20220420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyplaven, V.S., Bekher, S.A., Kolomeets, A.O. et al. REPRODUCIBILITY AND REPEATABILITY OF THE RESULTS OF STRAIN GAUGE CONTROL OF THE TREAD OF MOVING WAGON WHEELS. J Appl Mech Tech Phy 63, 721–730 (2022). https://doi.org/10.1134/S0021894422040204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040204

Keywords

Navigation