Skip to main content
Log in

BENDING ANALYSIS OF DOUBLE VISCOELASTIC NANOPLATES BASED ON THE MODIFIED COUPLE STRESS THEORY AND RELAXATION THEORY

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Based on the modified couple stress theory and stress relaxation phenomenon, the governing equation of motion for a double viscoelastic nanoplate system is established, and the bending analysis of the system is performed. Using Navier’s method, an analytical solution of the transverse relative deflection for two nanoplates is obtained. The effects of geometrical and physical factors on the bending behavior of the system are discussed. It is concluded that the transverse relative deflection of two nanoplates depends upon the relaxation time, ratio of the delayed to initial extensional elastic moduli, and damping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. S. Fregonese, N. Meng, H.-N. Nguyen, et al., “Electrical Compact Modelling of Graphene Transistors," Solid-State Electron. 73, 27–31 (2012).

    Article  ADS  Google Scholar 

  2. T. Murmu and S. Adhikari, “Nonlocal Vibration of Bonded Double-Nanoplate-Systems," Composites. Pt B. Engng. 42, 1901–1911 (2011).

    Article  Google Scholar 

  3. Y. Wang, F. M. Li, and Y. Z. Wang, “Nonlinear Vibration of Double Layered Viscoelastic Nanoplates Based on Nonlocal Theory," Phys. E. Low-dimens. Systems Nanostructures 67, 65–76 (2015).

    Article  ADS  Google Scholar 

  4. M. Hosseini, A. Jamalpoor, and M. Bahreman, “Small-Scale Effects on the Free Vibrational Behavior of Embedded Viscoelastic Double-Nanoplate-Systems under Thermal Environment," Acta Astronaut. 129, 400–409 (2016).

    Article  ADS  Google Scholar 

  5. S. Pouresmaeeli, S. A. Fazelzadeh, and E. Ghavanloo, “Exact Solution for Nonlocal Vibration of Double-Orthotropic Nanoplates Embedded in Elastic Medium," Composites. Pt B. Engng. 43, 3384–3390 (2012).

    Article  Google Scholar 

  6. A. Jamalpoor, A. Ahmadi-Savadkoohi, M. Hossein, and S. Hosseini-Hashemi, “Free Vibration and Biaxial Buckling Analysis of Double Magneto-Electro-Elastic Nanoplate-Systems Coupled by a Visco-Pasternak Medium via Nonlocal Elasticity Theory," Europ. J. Mech. 63, 84–98 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. C. Liu, Y. Q. Zhang, and L. F. Fan, “Nonlocal Vibration and Biaxial Buckling of Double-Viscoelastic-FGM-Nanoplate System with Viscoelastic Pasternak Medium in Between," Phys. Lett. A 381, 1228–1235 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. R. Asemi, A. Farajpour, H. R. Asemi, and M. Mohammadi, “Influence of Initial Stress on the Vibration of Double-Piezoelectric-Nanoplate Systems with Various Boundary Conditions using DQM," Phys. E. Low-dimens. Systems Nanostructures. 63, 169–179 (2014).

    Article  ADS  Google Scholar 

  9. Y. Wang, F. Li, X. Jing, and Y. Wang, “Nonlinear Vibration Analysis of Double-Layered Nanoplates with Different Boundary Conditions," Phys. Lett. A 379, 1532–1537 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Hosseini and A. Jamalpoor, “Analytical Solution for Thermomechanical Vibration of Double-Viscoelastic Nanoplate-Systems Made of Functionally Graded Materials," J. Thermal Stress. 38, 1428–1456 (2015).

    Article  Google Scholar 

  11. M. Hosseini, M. Bahreman, and A. Jamalpoor, “Thermomechanical Vibration Analysis of FGM Viscoelastic Multi-Nanoplate System Incorporating the Surface Effects via Nonlocal Elasticity Theory," Microsystem Technol. 23, 1–18 (2016).

    Google Scholar 

  12. F. Ebrahimi and S. H. S. Hosseini, “Double Nanoplate-Based NEMS under Hydrostatic and Electrostatic Actuations," Europ. Phys. J. Plus. 131, 1–19 (2016).

    Article  Google Scholar 

  13. F. Ebrahimy and S. H. S. Hosseini, “Nonlinear Electroelastic Vibration Analysis of NEMS Consisting of Double-Viscoelastic Nanoplates," Appl. Phys. A 122, 922 (2016).

    Article  Google Scholar 

  14. M. Yang, X. Zhen, L. Peng, et al., “Interlayer Crosslinking to Conquer the Stress Relaxation of Graphene Laminated Materials," Materials Horizons. 5, 1112–1119 (2018).

    Article  Google Scholar 

  15. K. S. Aliev, M. M. Kuliev, R. S. Ismaiilova, and A. O. Orudzhev, “Electric Conductivity and Dielectric Dispersion of Polyvinylchloride-Graphite Composites," Surface Engng Appl. Electrochem. 54, 117–124 (2018).

    Article  Google Scholar 

  16. G. G. Savenkov, “Dynamic Viscosity and Material Relaxation Time during Shock Loading," J. Appl. Mech. Tech. Phys. 51 (2), 148–154 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. F. Golovnev, E. I. Golovneva, M. S. Voronin, and E. R. Pruuel, “Numerical Study of Stress Relaxation in Nanostructures in the Course of Uniaxial Straining," J. Appl. Mech. Tech. Phys. 60 (4), 685–691 (2019.).

    Article  ADS  Google Scholar 

  18. R. Ansari, M. F. Oskouie, F. Sadeghi, and M. Bazdid-Vahdati, “Free Vibration of Fractional Viscoelastic Timoshenko Nanobeams using the Nonlocal Elasticity Theory," Phys. E. Low-dimens. Systems Nanostructures 74, 318–327 (2015).

    Article  ADS  Google Scholar 

  19. M. A. Attia and F. F. Mahmoud, “Analysis of Viscoelastic Bernoulli–Euler Nanobeams Incorporating Nonlocal and Microstructure Effects," Intern. J. Mech. Materials Design. 13, 385–406 (2016).

    Article  Google Scholar 

  20. M. A. Attia and F. F. Mahmoud, “Size-Dependent Behavior of Viscoelastic Nanoplates Incorporating Surface Energy and Microstructure Effects," Intern. J. Mech. Sci. 123, 117–132 (2017).

    Article  Google Scholar 

  21. M. Ajri and M. M. S. Fakhrabadi, “Nonlinear Free Vibration of Viscoelastic Nanoplates Based on Modified Couple Stress Theory," J. Comput. Appl. Mech. 49, 44–53 (2018).

    Google Scholar 

  22. F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple Stress Based Strain Gradient Theory for Elasticity," Intern. J. Solids Structures 39, 2731–2743 (2002).

    Article  Google Scholar 

  23. R. D. Mindlin, “Influence of Couple-Stresses on Stress Concentrations," Experimental Mech. 3, 307–308 (1963).

    Article  Google Scholar 

  24. M. A. Attia, “Investigation of Size-Dependent Quasistatic Response of Electrically Actuated Nonlinear Viscoelastic Microcantilevers and Microbridges," Meccanica 52, 2391–2420 (2017).

    Article  MathSciNet  Google Scholar 

  25. A. G. Arani and M. Shokravi, “Vibration Response of Visco-Elastically Coupled Double-Layered Visco-Elastic Graphene Sheet Systems Subjected to Magnetic Field via Strain Gradient Theory Considering Surface Stress Effects," Proc. Inst. Mech. Engrs. Pt N. J. Nanoengng Nanosystems 229, 180–190 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Zhang.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 183-194. https://doi.org/10.15372/PMTF20220419.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.Y., Fang, Y., Wang, Y.Y. et al. BENDING ANALYSIS OF DOUBLE VISCOELASTIC NANOPLATES BASED ON THE MODIFIED COUPLE STRESS THEORY AND RELAXATION THEORY. J Appl Mech Tech Phy 63, 711–720 (2022). https://doi.org/10.1134/S0021894422040198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040198

Keywords

Navigation