Skip to main content
Log in

A Two-Level Elasto-Viscoplastic Model: Application to the Analysis of the Crystal Anisotropy Influence

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Multilevel (mainly two-level) crystal plasticity models have been widely used for studying processes of inelastic deformation of polycrystalline materials over the last 15–20 years. Anisotropy of plastic strain in crystallites is usually taken into account at the mesoscale, while their elastic properties are often considered as isotropic. The purpose of this study is to assess the differences in the stress–strain characteristics (especially residual mesoscopic stress) by taking into account the anisotropy of elastic properties of materials calculated for the isothermal deformation of polycrystals with various types of crystallite lattice symmetry within a representative macroscopic volume. To this end, our results are compared with the data obtained for a material with isotropic elastic properties using the Voigt–Reuss–Hill averaging procedures. The results of the analysis for the stress–strain state of polycrystalline samples with fcc, bcc, and hcp lattices obtained in a simple shear test (up to the accumulated strain of 50%) are presented. The statistical two-level constitutive model, constructed within the geometrically nonlinear elasto-viscoplasticity theory, is used for calculations. In such constitutive models, the main fundamental relation is the law of elasticity written in the rate relaxation form in terms of the measures of the stress and strain rates, being independent of the chosen reference frame (or of the superimposed rigid motion). It is shown that the analysis of the anisotropy effect has a noticeable impact on the characteristic macroscopic volume stress–strain state only in the initial deformation stage. Subsequently, for deformations exceeding 1–1.5%, the difference becomes insignificant. At the same time, the results of calculating the residual mesoscopic stress (i.e., the stress after unloading the representative macroscopic volume), which has a significant effect on the strength characteristics of materials, with allowance for the crystal anisotropy turned out to be significantly different from those obtained under the hypothesis of isotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer-Aided Design of Materials), Panin, V.E., Ed., Novosibirsk: Nauka, 1995.

    Google Scholar 

  2. Panin, V.E., Physical foundations of mesomechanics of a medium with a structure, Russ. Phys. J., 1992, vol. 35, pp. 305–315. https://doi.org/10.1007/BF00560066

    Article  Google Scholar 

  3. Trusov, P.V. and Shveykin, A.I., Mnogourovnevye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, primery primeneniya (Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples), Novosibirsk: Sib. Otdel. Akad. Nauk, 2019. https://doi.org/10.15372/MULTILEVEL2019TPV

  4. McDowell, D.L., A perspective on trends in multiscale plasticity, Int. J. Plast., 2010, vol. 26, pp. 1280–1309. https://doi.org/10.1016/j.ijplas.2010.02.008

    Article  MATH  Google Scholar 

  5. Horstemeyer, M.F., Multiscale modeling: A review, in Practical Aspects of Computational Chemistry, Leszczynski, J. and Shukla, M.K., Eds., Netherlands: Springer, 2009, pp. 87–135. https://doi.org/10.1007/978-90-481-2687-3_4

  6. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater., 2010, vol. 58, pp. 1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058

    Article  ADS  Google Scholar 

  7. Trusov, P.V. and Shveykin, A.I., Teoriya plastichnosti (Plasticity Theory), Perm: Perm. Gos. Tekhn. Univ., 2011.

  8. Trusov, P.V. and Shveykin, A.I., Multilevel crystal plasticity models of single- and polycrystals. Statistical models, Phys. Mesomech., 2013, vol. 16, pp. 23–33. https://doi.org/10.1134/S1029959913010037

    Article  Google Scholar 

  9. Trusov, P.V. and Shveykin, A.I., Multilevel crystal plasticity models of single- and polycrystals. Direct models, Phys. Mesomech., 2013, vol. 16, pp. 99–124. https://doi.org/10.1134/S1029959913020021

    Article  Google Scholar 

  10. Kroner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 1959, vol. 4, pp. 273–334. https://doi.org/10.1007/BF00281393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lee, E.H. and Liu, D.T., Finite-strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 1967, vol. 38, pp. 19–27. https://doi.org/10.1063/1.1708953

    Article  ADS  Google Scholar 

  12. Lee, E.H., Elastic-plastic deformation at finite strain, J. Appl. Mech., 1969, vol. 36, pp. 1–6. https://doi.org/10.1115/1.3564580

    Article  ADS  MATH  Google Scholar 

  13. Green, A.E. and Adkins, J.E., Large Elastic Deformations and Non-Linear Continuum Mechanics, Oxford: Clarendon, 1960.

    MATH  Google Scholar 

  14. Trusov, P.V., Kondratev, N.S., and Shveikin, A.I., About geometricaly nonlinear constitutive relations for elastic material, Vestn. PNIPU, Mekh., 2015, no. 3, pp. 182–200. https://doi.org/10.15593/perm.mech/2015.3.13

  15. Taylor, G.I., Plastic strain in metals, J. Inst. Met., 1938, vol. 62, pp. 307–324.

    Google Scholar 

  16. Lin, T.H., Analysis of elastic and plastic strains of a face-centered cubic crystal, J. Mech. Phys. Solid., 1957, vol. 5, pp. 143–149. https://doi.org/10.1016/0022-5096(57)90058-3

    Article  ADS  MATH  Google Scholar 

  17. Truesdell, C.A., Hypo-elasticity, J. Ration. Mech. Anal., 1955, vol. 4, pp. 83–133.

    MathSciNet  MATH  Google Scholar 

  18. Truesdell, C., The simplest rate theory of pure elasticity, Commun. Pure Appl. Math., 1955, vol. 8, pp. 123–132. https://doi.org/10.1002/cpa.3160080109

    Article  MathSciNet  MATH  Google Scholar 

  19. Truesdell, C., Hypo-elastic shear, J. Appl. Phys., 1956, vol. 27, pp. 441–447. https://doi.org/10.1063/1.1722399

    Article  ADS  MathSciNet  Google Scholar 

  20. Xiao, H., Bruhns, O.T., and Meyers, A., Hypo-elasticity model based upon the logarithmic stress rate, J. Elasticity, 1997, vol. 47, pp. 51–68. https://doi.org/10.1023/A:1007356925912

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiao, H., Bruhns, O.T., and Meyers, A., Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures, Arch. Mech., 1988, vol. 50, no. 6, pp. 1015–1045. https://am.ippt.pan.pl/index.php/am/article/view/v50p1015/631

    MathSciNet  MATH  Google Scholar 

  22. Xiao, H., Bruhns, O.T., and Meyers, A., The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proc. R. Soc. London, Ser. A, 2000, vol. 456, pp. 1865–1882. https://doi.org/10.1098/rspa.2000.0591

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Xiao, H., Bruhns, O.T., and Meyers, A., Objective stress rates, path-dependence properties and non-integrability problems, Acta Mech., 2005, vol. 176, pp. 135–151. https://doi.org/10.1007/s00707-005-0218-2

    Article  MATH  Google Scholar 

  24. Hill, R., Constitutive inequalitites for isotropic elastic solids under finite strain, Proc. R. Soc. London, Ser. A, 1970, vol. 314, pp. 457–472. https://doi.org/10.1098/rspa.1970.0018

    Article  ADS  MATH  Google Scholar 

  25. Seth, B.R., Generalized strain and transition concepts for elastic-plastic deformation-creep and relaxation, in Applied Mechanics, Görtler, H., Ed., Berlin: Springer, 1966, pp. 383–389. https://doi.org/10.1007/978-3-662-29364-5_51

  26. Lurie, A.I., Nonlinear Theory of Elasticity, Amsterdam: Elsevier, 1990.

    MATH  Google Scholar 

  27. Lehmann, T., Anisotrope plastische Formänderungen, Rheol. Acta, 1964, vol. 3, pp. 281–285. https://doi.org/10.1007/BF02096162

    Article  MATH  Google Scholar 

  28. Dienes, J.K., On the analysis of rotation and stress rate in deforming bodies, Acta Mech., 1979, vol. 32, pp. 217–232. https://doi.org/10.1007/BF01379008

    Article  MathSciNet  MATH  Google Scholar 

  29. Pozdeev, A.A., Trusov, P.V., and Nyashin, Yu.I., Bol’shie uprugoplasticheskie deformatsii: teoriya, algoritmy, prilozheniya (Lagre Elastic-Plastic Deformations: Theory, Algorithms, Applications), Moscow: Nauka, 1986.

  30. Trusov, P.V., Shveykin, A.I., and Yanz, A.Yu., Motion decomposition, frame-indifferent derivatives, and constitutive relations at large displacement gradients from the viewpoint of multilevel modeling, Phys. Mesomech., 2017, vol. 20, pp. 357–376. https://doi.org/10.1134/S1029959917040014

    Article  Google Scholar 

  31. Trusov, P.V. and Shveykin, A.I., On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites, Phys. Mesomech., 2016, vol. 19, pp. 377–391. https://doi.org/10.1134/S1029959917040026

    Article  Google Scholar 

  32. Krivosheina, M.N., Tuch, E.V., and Khon, Yu.A., Applying the Mises-Hill criterion to modeling the dynamic loading of highly anisotropic materials, Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, pp. 80–84. https://doi.org/10.3103/S1062873812010169

    Article  MATH  Google Scholar 

  33. Newnham, R.E., Properties of Materials. Anisotropy, Symmetry, Structure, Oxford: Oxford Univ. Press, 2005.

    Google Scholar 

  34. Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh tel (The Theory of Elasticity of Micro-Inhomogeneous Bodies), Moscow: Nauka, 1977.

  35. Birger, I.A., Ostatochnye napryazheniya (Residual Stresses), Moscow: Mashgiz, 1963.

  36. Fridman, Ya.B., Mekhanicheskie svoistva metallov. Ch. 1. Deformatsiya i razrushenie (Mechanical Properties of Metals. Part 1. Deformation and Destruction), Moscow: Mashinostroenie, 1974.

  37. Pozdeev, A.A., Nyashin, Yu.I., and Trusov, P.V., Ostatochnye napryazheniya: teoriya i prilozheniya (Residual Stresses: Theory and Applications), Moscow: Nauka, 1974.

  38. Radchenko, V.P. and Saushkin, M.N., Polzuchest’ i relaksatsiya ostatochnykh napryazhenii v uprochnennykh konstruktsiyakh (Creep and Relaxation of Residual Stresses in Reinforced Structures), Moscow: Mashinostroenie, 2005.

  39. Kachanov, L.M., Osnovy mekhaniki razrusheniya (Fundamentals of Fracture Mechanics), Moscow: Nauka, 1974.

  40. Collins, J.A., Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, New York: Wiley, 1981.

    Google Scholar 

  41. Rabotnov, Yu.N., Vvedenie v mekhaniku razrusheniya (Introduction to Fracture Mechanics), Moscow: Nauka, 1987.

  42. Besson, J., Continuum models of ductile fracture: A review, Int. J. Damage Mech., 2010, vol. 19, pp. 3–52. https://doi.org/10.1177%2F1056789509103482

    Article  Google Scholar 

  43. Volegov, P.S., Gribov, D.S., and Trusov, P.V., Damage and fracture: Review of experimental studies, Phys. Mesomech., 2016, vol. 19, pp. 319–331. https://doi.org/10.1134/S1029959916030103

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (basic part of a State assignment for the Perm National Research Polytechnic University, project no. FSNM-020-0027) and the Russian Foundation for Basic Research and Perm Territory (project no. 20-41-596002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Sokolov or P. V. Trusov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.S., Trusov, P.V. A Two-Level Elasto-Viscoplastic Model: Application to the Analysis of the Crystal Anisotropy Influence. J Appl Mech Tech Phy 62, 1145–1155 (2021). https://doi.org/10.1134/S0021894421070178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421070178

Keywords:

Navigation