Skip to main content
Log in

CREATION OF A HETEROGENEOUS MATERIAL BASED ON THE TITANIUM ALLOY AND TITANIUM BORIDE BY SELECTIVE LASER MELTING

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of theoretical and experimental investigations of physical and mechanical properties of a heterogeneous material based on the TiB ceramics and Ti–6Al–4V metallic alloy obtained by means of selective laser melting are reported. Elastic properties of the heterogeneous structure under analysis are described by the method of conditional moments. Young’s modulus of the created heterogeneous material based on the titanium alloy and titanium boride is measured. The experimental data are found to be in good agreement with the numerical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. Sabahi Namini, S. A. A. Dilawary, A. Motallebzadeh, et al., “Effect of TiB2 Addition on the Elevated Temperature Tribological Behavior of Spark Plasma Sintered Ti Matrix Composite," Composites. Pt B. Engng. 172, 271–280 (2019).

    Article  Google Scholar 

  2. A. Golyshev and A. Orishich, “Microstructure and Mechanical Characterization of Ti6Al4V–B4C Metal Ceramic Alloy, Produced by Laser Powder-Bed Fusion Additive Manufacturing," Intern. J. Adv. Manufactur. Technol. 109 (1/2), 579–588 (2020).

    Article  Google Scholar 

  3. T. Saito, “The Automotive Application of Discontinuously Reinforced TiB–Ti Composites," JOM (Minerals, Metals Materials Soc.) 56 (5), 33–36 (2004).

    Article  ADS  Google Scholar 

  4. S. Tamirisakandala, R. B. Bhat, J. S. Tiley, et al., “Grain Refinement of Cast Titanium Alloys via Trace Boron Addition," Scripta Materialia 53 (12), 1421–1426 (2005).

    Article  Google Scholar 

  5. S. I. Lieberman, A. M. Gokhale, S. Tamirisakandala, and R. B. Bhat, “Three-Dimensional Microstructural Characterization of Discontinuously Reinforced Ti64–TiB Composites Produced via Blended Elemental Powder Metallurgy," Materials Character. 60 (9), 957–963 (2009).

    Article  Google Scholar 

  6. S. Gorsse and D. B. Miracle, “Mechanical Properties of Ti–6Al–4V/TiB Composites with Randomly Oriented and Aligned TiB Reinforcements," Acta Materialia 51 (9), 2427–2442 (2003).

    Article  ADS  Google Scholar 

  7. S. Gorsse, Petitcorps Y. Le, S. Matar, et al., “Investigation of the Young’s Modulus of TiB Needles in situ Produced in Titanium Matrix Composite," Materials Sci. Engng. A. 340 (1/2), 80–87 (2003).

    Article  Google Scholar 

  8. X. Wu, “In situ Formation by Laser Cladding of a TiC Composite Coating with a Gradient Distribution," Surface Coatings Technol. 115 (2/3), 111–115 (1999).

    Article  Google Scholar 

  9. H. Y. Wang, Q. C. Jiang, X. L. Li, et al., “In situ Synthesis of TiC/Mg Composites in Molten Magnesium," Scripta Materialia 48 (9), 1349–1354 (2003).

    Article  Google Scholar 

  10. C. Cui, Z. Guo, H. Wang, et al., “In situ TiC Particles Reinforced Grey Cast Iron Composite Fabricated by Laser Cladding of Ni–Ti–C System," J. Materials Process. Technol. 183 (2/3), 380–385 (2007).

    Article  Google Scholar 

  11. M. Masanta, P. Ganesh, R. Kaul, et al., “Development of a Hard Nano-Structured Multi-Component Ceramic Coating by Laser Cladding," Materials Sci. Engng. A 508 (1/2), 134–140 (2009).

    Article  Google Scholar 

  12. D. Herzog, V. Seyda, E. Wycisk, et al., “Additive Manufacturing of Metals," Acta Materialia 117 (15), 371–392 (2016).

    Article  ADS  Google Scholar 

  13. V. M. Fomin, A. A. Golyshev, V. F. Kosarev, et al., “Creation of Metal-Ceramic Structures Based on Ti, Ni, WC, and B4C with the Use of the Laser Cladding and Cold Gas Dynamic Spraying Technologies," Fiz. Mezomekh. 22 (4), 5–15 (2019).

    Google Scholar 

  14. M. Fang, Y. Han, Z. Shi, et al., “Embedding Boron into Ti Powder for Direct Laser Deposited Titanium Matrix Composite: Microstructure Evolution and the Role of Nano-TiB Network Structure," Composites. Pt B. Engng. 211, 108683 (2021).

    Article  Google Scholar 

  15. Q. An, L. Huang, S. Jiang, et al., “Two-Scale TiB/Ti64 Composite Coating Fabricated by Two-Step Process," J. Alloys Compounds 755, 29–40 (2018).

    Article  Google Scholar 

  16. V. Ocelik, D. Matthews, and J. T. M. De Hosson, “Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High Power Laser," Surface Coatings Technol. 197 (2/3), 303–315 (2005).

    Article  Google Scholar 

  17. I. Shishkovsky, N. Kakovkina, and V. Sherbakov, “Graded Layered Titanium Composite Structures with TiB2 Inclusions Fabricated by Selective Laser Melting," Composite Structures 169, 90–96 (2017).

    Article  Google Scholar 

  18. L. P. Khoroshun, “Mathematical Models and Methods of the Mechanics of Stochastic Composites," Intern. Appl. Mech. 36 (10), 1284–1316 (2000).

    Article  ADS  Google Scholar 

  19. T. D. Shermergor, Theory of Elasticity for Micro-Non-Homogeneous Media (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. R. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  21. L. P. Khoroshun, “A New Mathematical Model of the Nonuniform Deformation of Composites," Mech. Composite Materials 31 (3), 310–318 (1995).

    Article  Google Scholar 

  22. A. A. Golyshev, A. M. Orishich, and A. A. Filippov, “Similarity Laws in Laser Cladding of Cermet Coatings," Prikl. Mekh. Tekh. Fiz. 60 (4), 194–205 (2019) [J. Appl. Mech. Tech. Phys. 60 (4), 758–767 (2019)].

    Article  ADS  Google Scholar 

  23. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments," J. Materials Res. 7 (6), 1564–1583 (1992).

    Article  ADS  Google Scholar 

  24. R. Hill, “A Self-Consistent Mechanics of Composite Materials," J. Mech. Phys. Solids 13 (4), 213–222 (1965).

    Article  ADS  Google Scholar 

  25. Z. Hashin and S. Shtrikman, “On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity," J. Mech. Phys. Solids 10 (4), 335–342 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. V. Bolotin and V. N. Moskalenko, “Determination of Elasticity Constants for Microheterogeneous Media," Prikl. Mekh. Tekh. Fiz. 9 (1), 66–72 (1968).

    Google Scholar 

  27. K. Morsi and V. V. Patel, “Processing and Properties of Titanium-Titanium Boride (TiB) Matrix Composites. A Review," J. Materials Sci. 42 (6), 2037–2047 (2007).

    Article  ADS  Google Scholar 

  28. A. V. Mishin and V. M. Fomin, “Investigation of Elastic Properties of Materials Obtained by Means of Cold Gas Dynamic Spraying with Laser Processing," Prikl. Mekh. Tekh. Fiz. 62 (6) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Filippov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 5, pp. 58-67. https://doi.org/10.15372/PMTF20210506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, V.M., Brusentseva, T.A., Golyshev, A.A. et al. CREATION OF A HETEROGENEOUS MATERIAL BASED ON THE TITANIUM ALLOY AND TITANIUM BORIDE BY SELECTIVE LASER MELTING. J Appl Mech Tech Phy 62, 752–759 (2021). https://doi.org/10.1134/S0021894421050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421050060

Keywords

Navigation