Skip to main content
Log in

APPLICATION OF ELECTROCONDUCTING COMPOSITE MATERIALS FOR ADDITIONAL DAMPING OF SMART SYSTEMS BASED ON PIEZOELEMENTS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A problem of damping vibrations of a smart structure consisting of elastic and viscoelastic materials and piezoelements with connected shunt circuits is considered. It is proposed to replace the classical resistor in the shunt circuit by an element made of an electroconducting material, in particular, a polymer material filled with graphene nanoparticles. This element plays the role of several resistors with different resistance values, which ensure multimodal damping of vibrations. A mathematical formulation of the problem of forced steady-state vibrations and natural vibrations of smart systems under consideration is provided, as well as results of numerical calculations, which show that graphene-based composites can be used for additional damping of vibrations of smart structures based on piezoelements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. S. O. Reza Moheimani and A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping (Springer, London, 2006).

    MATH  Google Scholar 

  2. N. W. Hagood and A. Von Flotow, “Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks," J. Sound Vibrat. 146, 243–268 (1991).

    Article  ADS  Google Scholar 

  3. F. A. C. Viana and S. Valder, (Jr.) “Multimodal Vibration Damping Through Piezoelectric Patches and Optimal Resonant Shunt Circuits," J. Brazill. Soc. Mech. Sci. Engng. 28 (3), 293–310 (2006).

    Article  Google Scholar 

  4. T. H. Cheng and I. K. Oh, “A Current-Flowing Electromagnetic Shunt Damper for Multi-Mode Vibration Control of Cantilever Beams," Smart Materials Structures 18 (6), 095036 (2009).

    Article  Google Scholar 

  5. S. Behrens and S. O. R. Moheimani, “Optimal Resistive Elements for Multiple Mode Shunt Damping of a Piezoelectric Laminate Beam," in Proc. of the 39th IEEE Conf. on Decision and Control. S. l., 4, 4018–4023 (2000). [Electron. resource]. DOI: 10.1109/CDC.2000.912343.

  6. A. J. Fleming and S. O. R. Moheimani, “Adaptive Piezoelectric Shunt Damping," Smart Materials Structures 12 (1), 36–48 (2003).

    Article  Google Scholar 

  7. S. Behrens and S. O. R. Moheimani, “Current Flowing Multiple Mode Piezoelectric Shunt Dampener," SPIE Proc. Ser. 4697, (2002). [Electron. resource]. DOI: 10.1117/12.472658.

  8. S. Behrens, S. O. R. Moheimani, and A. J. Fleming, “Multiple Mode Current Flowing Passive Piezoelectric Shunt Controller," J. Sound Vibrat. 266 (5), 929–942 (2003).

    Article  ADS  Google Scholar 

  9. J. J. Hollkamp, “Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts," J. Intelligent Material Systems Structures 5 (1), 49–57 (1994).

    Article  Google Scholar 

  10. S. Y. Wu, “Method for Multiple Mode Shunt Damping of Structural Vibration using a Single PZT Transducer," SPIE Proc. Ser. 3327, 159–168 (1998).

    Article  ADS  Google Scholar 

  11. S. Y. Wu, “Multiple PZT Transducers Implemented with Multiple-Mode Piezoelectric Shunting for Passive Vibration Damping," SPIE Proc. Ser. 3672, 112–122 (1999).

    Article  ADS  Google Scholar 

  12. S. Y. Wu and A. S. Bicos, “Structural Vibration Damping Experiments using Improved Piezoelectric Shunts," SPIE Proc. Ser. 3045, 40–50 (1997).

    Article  ADS  Google Scholar 

  13. L. Yan, M. Lallart, and D. Guyomar, “Multimodal Nonlinear Damping Technique using Spatial Filtering," J. Intelligent Material Systems Structures 25 (3), 308–320 (2014).

    Article  Google Scholar 

  14. S. Vidoli and F. dell’Isola, “Vibration Control in Plates by Uniformly Distributed PZT Actuators Interconnected via Electric Networks," Europ. J. Mech. A. Solids 20, 435–456 (2001).

    Article  ADS  Google Scholar 

  15. M. Porfri, F. dell’Isola, and M. F. M. Frattale, “Circuit Analog of a Beam and its Application to Multimodal Vibration Damping, using Piezoelectric Transducers," Intern. J. Circuit Theory Appl. 32, 167–198 (2004).

    Article  Google Scholar 

  16. F. dell’Isola, E. G. Henneke, and P. Porfiri, “Piezoelectromechanical Structures: New Trends Towards the Multimodal Passive Vibration Control," SPIE Proc. Ser. 5052, 392–402 (2003).

    Article  ADS  Google Scholar 

  17. C. Maurini, F. dell’Isola, and D. Del Vescovo, “Comparison of Piezoelectronic Networks Acting as Distributed Vibration Absorbers," Mech. Systems Signal Process 18 (5), 1243–1271 (2004).

    Article  ADS  Google Scholar 

  18. I. Giorgio, A. Culla, and D. Del Vescovo, “Multimode Vibration Control using Several Piezoelectric Transducers Shunted with a Multiterminal Network," Arch. Appl. Mech. 79 (9), 859–879 (2009).

    Article  ADS  Google Scholar 

  19. F. Casadei, M. Ruzzene, L. Dozio, and K. A. Cunefare, “Broadband Vibration Control through Periodic Arrays of Resonant Shunts: Experimental Investigation on Plates," Smart Materials Structures 19 (1), 015002 (2010).

    Article  Google Scholar 

  20. K. M. Guo and J. Jiang, “Independent Modal Resonant Shunt for Multimode Vibration Control of a Truss-Cored Sandwich Panel," Intern. J. Dynamics Control 2, 326–334 (2014).

    Article  Google Scholar 

  21. M. A. Trindade and C. E. B. Maio, “Multimodal Passive Vibration Control of Sandwich Beams with Shunted Shear Piezoelectric Materials," Smart Materials Structures 17, 055015 (2008).

    Article  Google Scholar 

  22. A. Spadoni, M. Ruzzene, and K. Cunefare, “Vibration and Wave Propagation Control of Plates with Periodic Arrays of Shunted Piezoelectric Patches," J. Intelligent Material Systems Structures 20 (5), 979–990 (2009).

    Article  Google Scholar 

  23. M. Pang, Y. Fang, and Y. Q. Zhang, “Free and Forced Vibrations of Double-Layered Viscoelastic Orthotropic Graphene Sheets with a High-Order Surface Stress Effect," Prikl. Mekh. Tekh. Fiz. 62 (1), 147–158 (2021) [J. Appl. Mech. Tech. Phys. 62 (1), 129–138 (2021)].

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Wang and D. D. L. Chung, “Through-Thickness Piezoresistivity in a Carbon Fiber Polymer-Matrix Structural Composite for Electrical Resistance-Based Through-Thickness Strain Sensing," Carbon 60, 129–138 (2013).

    Article  Google Scholar 

  25. X. Xi and D. D. L. Chung, “Piezoelectric and Piezoresistive Behavior of Unmodified Carbon Fiber," Carbon 145, 452–461 (2019).

    Article  Google Scholar 

  26. T. N. Tallman and H. Hassan, “A Computational Exploration of the Effect of Alignment and Aspect Ratio on Alternating Current Conductivity in Carbon Nanofiber-Modified Epoxy," J. Intelligent Material Systems Structures 31 (5), 756–770 (2020).

    Article  Google Scholar 

  27. B. Alemour, M. H. Yaacob, H. N. Lim, et al., “Review of Electrical Properties of Graphene Conductive Composites," Intern. J. Nanoelectron. Materials 11 (4), 371–398 (2018).

    Google Scholar 

  28. V. P. Matveenko, D. A. Oshmarin, and N. A. Iurlova, “Application of Graphene Composites for Additional Vibration Damping in Smart Structures Based on Piezoelectric Elements," Dokl. Ross. Akad. Nauk, Fiz., Tekhn. Nauki 491 (1), 18–23 (2020) [Doklady Physics 65 (3), 85–89 (2020)].

  29. K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon Press, London, 1982).

    MATH  Google Scholar 

  30. B. Jaffe, W. R. Cook (Jr.), and H. Jaffe Piezoelectric Ceramics (Academic Press, London, New York, 1971).

    Google Scholar 

  31. M. Rubinshtein and R. Colby Polymer Physics (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  32. E. P. Kligman and V. P. Matveenko, “Natural Vibration Problem of Viscoelastic Solids as Applied to Optimization of Dissipative Properties of Constructions," J. Vibrat. Control. 3 (1), 87–102 (1997).

    Article  Google Scholar 

  33. V. P. Matveenko, D. A. Oshmarin, N. V. Sevodina, and N. A. Iurlova, “Natural Vibration Problem for Electroviscoelastic Body with External Electric Circuits and Finite-Element Relations for its Numerical Implementation," Vych. Mekh. Splosh. Sred 9 (4), 476–485 (2016) [Comp. Cont. Mech. 9 (4), 476–485 (2016)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Oshmarin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 5, pp. 45-57. https://doi.org/10.15372/PMTF20210505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveenko, V.P., Oshmarin, D.A. & Iurlova, N.A. APPLICATION OF ELECTROCONDUCTING COMPOSITE MATERIALS FOR ADDITIONAL DAMPING OF SMART SYSTEMS BASED ON PIEZOELEMENTS. J Appl Mech Tech Phy 62, 742–751 (2021). https://doi.org/10.1134/S0021894421050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421050059

Keywords

Navigation