Skip to main content
Log in

Entropy Analysis of a Convective Film Flow of a Power-Law Fluid with Nanoparticles Along an Inclined Plate

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Entropy generation in a two-dimensional steady laminar thin film convection flow of a non-Newtonian nanofluid (Ostwald-de-Waele-type power-law fluid with embedded nanoparticles) along an inclined plate is examined theoretically. A revised Buongiorno model is adopted for nanoscale effects, which includes the effects of the Brownian motion and thermophoresis. The nanofluid particle fraction on the boundary is passively rather than actively controlled. A convective boundary condition is employed. The local nonsimilarity method is used to solve the dimensionless nonlinear system of governing equations. Validation with earlier published results is included. A decrease in entropy generation is induced due to fluid friction associated with an increasing value of the rheological power-law index. The Brownian motion of nanoparticles enhances thermal convection via the enhanced transport of heat in microconvection surrounding individual nanoparticles. A higher convective parameter implies more intense convective heating of the plate, which increases the temperature gradient. An increase in the thermophoresis parameter decreases the nanoparticle volume fraction near the wall and increases it further from the wall. Entropy generation is also reduced with enhancement of the thermophoresis effect throughout the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wang, “Analytic Solutions for a Liquid thin Film on an Unsteady Stretching Surface,” Heat Mass Transfer 42, 759–766 (2006).

    Article  ADS  Google Scholar 

  2. H. I. Andersson and F. Irgens, “Gravity-Driven Laminar Film Flow of Power-Law Fluids along Vertical Walls,” J. Non-Newtonian Fluid Mech. 27(2), 153–172 (1988).

    Article  Google Scholar 

  3. R. S. R. Gorla and Y. L. Nee, “Heat Transfer in the Thermal Entrance Region of a Laminar non-Newtonian Falling Liquid Film,” Int. J. Heat Fluid Flow 10(2), 166–169 (1989).

    Article  Google Scholar 

  4. D. Y. Shang and H. I. Anderson, “Heat Transfer in Gravity-Driven Film Flow of Power-Law Fluids,” Int. J. Heat Mass Transfer 42, 2085–2099 (1999).

    Article  MATH  Google Scholar 

  5. R. S. R. Gorla, L. W. Byrd, and D. M. Pratt, “Entropy Minimization in Micro-Scale Evaporating thin Liquid Film in Capillary Tubes,” Heat Mass Transfer 45(2), 131–138 (2008).

    Article  ADS  Google Scholar 

  6. S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Development and Applications of Non-Newtonian Flows (ASME, New York, 1995), Vol. 231, pp. 99–105.

    Google Scholar 

  7. K. R. Sharma, “Process Considerations for Nanostructured Coatings,” in Anti-Abrasive Nanocoatings, Current and Future Applications (Woodhead, Cambridge, 2015), pp. 137–153.

    Chapter  Google Scholar 

  8. H. T. Phan, N. Caney, H. Phan, et al., “Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism,” Int. J. Heat Mass Transfer 52, 5459–5471 (2009).

    Article  Google Scholar 

  9. A. Ullah, E. O. Alzahrani, Z. Shah, et al., “Nanofluids thin Film Flow of Reiner-Philippoff Fluid over an Unstable Stretching Surface with Brownian Motion and Thermophoresis Effects,” Coatings 9(1), 21 (2019); https://doi.org/10.3390/coatings9010021.

    Article  Google Scholar 

  10. J. Buongiorno, “Convective Transport in Nanofluids,” Trans. ASME, J. Heat Transfer 128, 240–250 (2006).

    Article  Google Scholar 

  11. R. K. Tiwari and M. K. Das, “Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids,” Int. J. Heat Mass Transfer 50, 2002–2018 (2007).

    Article  MATH  Google Scholar 

  12. B. C. Pak and Y. I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Exp. Heat Transfer 11(2), 151–170 (1998).

    Article  ADS  Google Scholar 

  13. A. V. Kuznetsov and D. A. Nield, “Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate,” Int. J. Thermal Sci. 49(2), 243–247 (2010).

    Article  Google Scholar 

  14. D. Tripathi, A. Sharma, and O. Anwar Bég, “Joule Heating and Buoyancy Effects in Electro-Osmotic Peristaltic Transport of Aqueous Nanofluids Through a Microchannel with Complex Wave Popagation,” Adv. Powder Technol. 29, 639–653 (2018).

    Article  Google Scholar 

  15. R. M. Kasmani, I. Muhaimin, and R. Kandasamy, “Laminar Boundary Layer Flow of a Nanofluid along a Wedge in the Presence of Suction/Injection,” J. Appl. Mech. Tech. Phys. 54(3), 377–384 (2013).

    Article  ADS  MATH  Google Scholar 

  16. P. Loganathan, P. Nirmal Chand, and P. Ganesan, “Transient Natural Convective Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation,” J. Appl. Mech. Tech. Phys. 56(3), 433–442 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Ahmadi Nadooshan, H. Eshgarf, and M. Afrand, “Evaluating the Effects of Different Parameters on Rheological Behavior of Nanofluids: A Comprehensive Review,” Powder Technol. 338, 342–353 (2018).

    Article  Google Scholar 

  18. A. K. Sharma, A. K. Tiwari, and A. R. Dixit, “Rheological Behaviour of Nanofluids: A Review,” Renewable Sustainable Energy Rev. 53, 779–791 (2016).

    Article  Google Scholar 

  19. H. Chen, Y. Ding, Ch. Tan, et al., “Rheological Behaviour of Nanofluids,” New J. Phys. 9 (10) (2007); https://iopscience.iop.org/article/10.1088/1367-2630/9/10/367/meta.

    Article  ADS  Google Scholar 

  20. B. Vasu and Atul Kumar Ray, “Numerical Study of Carreau Nanofluid Flow Past Vertical Plate with the Cattaneo-Christov Heat Flux Model,” Int. J. Numer. Methods Heat Fluid Flow 29(2), 702–723 (2019); https://doi.org/10.1108/HFF-03-2018-0104.

    Article  Google Scholar 

  21. R. S. R. Gorla and B. K. Gireesha, “Convective Heat Transfer in Three-Dimensional Boundary-Layer Flow of Viscoelastic Nanofluid,” AIAA J., Thermophys. Heat Transfer 30, 334–341 (2016).

    Article  Google Scholar 

  22. A. R. Studart, E. Amstad, M. Antoni, and L. J. Gauckler, “Rheology of Concentrated Suspensions Containing Weakly Attractive Alumina Nanoparticles,” J. Amer. Ceram. Soc. 89, 2418–2425 (2006).

    Article  Google Scholar 

  23. T. Hayat, M. Hussain, S. A. Shehzad, and A. Alsaedi, “Flow of a Power-Law Nanofluid Past a Vertical Stretching Sheet with a Convective Boundary Condition,” J. Appl. Mech. Tech. Phys. 57(1), 173–179 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. S. R. Gorla and B. Vasu, “Unsteady Convective Heat Transfer to a Stretching Surface in a non-Newtonian Nanofluid,” J. Nanofluids 5(4), 581–594 (2016).

    Article  Google Scholar 

  25. M. Ferdows and M. A. A. Hamad, “MHD Flow and Heat Transfer of a Power-Law non-Newtonian Nanofluid (Cu-H2O) over a Vertical Stretching Sheet,” J. Appl. Mech. Tech. Phys. 57(4), 603–610 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  26. O. D. Makinde and A. Aziz, “Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with a Convective Boundary Condition,” Int. J. Thermal Sci. 50(7), 1326–1332 (2011).

    Article  Google Scholar 

  27. P. K. Kameswaran, B. Vasu, P. V. S. N. Murthy, and R. S. R. Gorla, “Mixed Convection from a Wavy Surface Embedded in a Thermally Stratified Nanofluid Saturated Porous Medium with Non-Linear Boussinesq Approximation,” Int. Comm. Heat Mass Transfer 77, 78–86 (2016).

    Article  Google Scholar 

  28. O. Anwar Bég, S. S. Motsa, M. N. Islam, and M. Lockwood, “Pseudo-Spectral and Variational Iteration Simulation of Exothermically-Reacting Rivlin-Ericksen Viscoelastic Flow and Heat Transfer in a Rocket Propulsion Duct,” Comput. Thermal Sci. 6, 91–102 (2014).

    Article  Google Scholar 

  29. M. J. Uddin, O. Anwar Bég, P. K. Ghose, and A. I. M. Ismael, “Numerical Study of non-Newtonian Nanofluid Transport in a Porous Medium with Multiple Convective Boundary Conditions and Nonlinear Thermal Radiation Effects,” Int. J. Numer. Methods Heat Fluid Flow 26, 1–25 (2016).

    Article  Google Scholar 

  30. A. Bejan, Entropy Generation Through Heat and Fluid Flow (Wiley, New York, 1982).

    Google Scholar 

  31. F. Bouras and F. Khaldi, “Numerical Analysis of Entropy Generation in a Turbulent Diffusion Flame,” J. Appl. Mech. Tech. Phys. 57(1), 20–26 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. B. Vasu, C. RamReddy, P. V. S. N. Murthy, and R. S. R. Gorla, “Entropy Generation Analysis in Nonlinear Convection Flow of Thermally Stratified Fluid in Saturated Porous Medium with Convective Boundary Condition,” ASME J. Heat Transfer 139(9), 091701 (2017).

    Article  Google Scholar 

  33. G. J. Reddy, M. Kumar, and O. Anwar Bég, “Effect of Temperature Dependent Viscosity on Entropy Generation in Transient Viscoelastic Polymeric Fluid Flow from an Isothermal Vertical Plat,” Phys. A. Statist. Mech. Appl. 510, 426–445 (2018).

    Article  Google Scholar 

  34. A. S. Butt and A. Ali, “Entropy Generation Effects in a Hydromagnetic Free Convection Flow Past a Vertical Oscillating Plate,” J. Appl. Mech. Tech. Phys. 57(1), 27–37 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. M. Rashidi, N. Kavyani, O. Anwar Bég, and R. S. R. Gorla, “Transient Magnetohydrodynamic Film Flow, Heat Transfer and Entropy Generation from a Spinning Disk System: DTM-Pade Semi-Numerical Simulation,” Int. J. Energy Technol. 5, 1–14 (2013).

    Google Scholar 

  36. S. Morsili and A. Sabeur-Bendehina, “Entropy Generation and Natural Convection in Square Cavities with Wavy Walls,” J. Appl. Mech. Tech. Phys. 54(6), 913–920 (2013).

    Article  ADS  Google Scholar 

  37. J. Srinivas and O. Anwar Bég, “Homotopy Study of Entropy Generation in Magnetized Micropolar Flow in a Vertical Parallel Plate Channel with Buoyancy Effect,” Heat Transfer Res. 49, 529–553 (2018).

    Article  Google Scholar 

  38. A. Bhardwaj, N. Shukla, P. Rana, and O. Anwar Bég, “Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis,” Differ. Eq. Dyn. Syst. (2019); https://doi.org/10.1007/s12591-019-00456-0.

  39. N. Shukla, P. Rana, O. Anwar Bég, et al., “Unsteady Electromagnetic Radiative Nanofluid Stagnation-Point Flow from a Stretching Sheet with Chemically Reactive Nanoparticles, Stefan Blowing Effect and Entropy Generation,” J. Nanomater., Nanoeng. Nanosyst. (2018); DOI: https://doi.org/10.1177/2397791418782030.

    Google Scholar 

  40. L. C. Woods, The Thermodynamics of Fluid Systems (Oxford Univ. Press, New York, 1975).

    Google Scholar 

  41. B. G. Edgar and D. C. Edward, Coating and Drying Defects Troubleshooting Operating Problems (Wiley Intersciences, New York, 1995).

    Google Scholar 

  42. Z.-M. Liu, Y.-M. Jin, and H.-M. Liu, “Progress on Formation and Prevention of Defects in thin Film Coating,” J. Safety Environment. 8, 135–139 (2008).

    Google Scholar 

  43. W. J. Minkowycz, E. M. Sparrow, and J. Y. Murphy, Handbook of Numerical Heat Transfer (John Wiley and Sons, New York, 2006).

    Google Scholar 

  44. O. Anwar Bég, A. Y. Bakier, V. R. Prasad, and S. K. Ghosh, “Nonsimilar, Laminar, Steady, Electrically-Conducting Forced Convection Liquid Metal Boundary Layer Flow with Induced Magnetic Field Effects,” Int. J. Thermal Sci. 48, 1596–1606 (2009).

    Article  Google Scholar 

  45. O. Anwar Bég, M. Ferdows, S. Islam, and M. Nazrul Islam, “Numerical Simulation of Marangoni Magnetohydrodynamic Bio-Nanofluid Convection from a Non-Isothermal Surface with Magnetic Induction Effects: A Bio-Nanomaterial Manufacturing Transport Model,” J. Mech. Medicine Biology 14, 1450039.1–1450039.32 (2014).

    Google Scholar 

  46. M. A. Akhavan-Behabadi, F. Hekmatipour, S. M. Mirhabibi, et al., “Experimental Investigation of Thermal-Rheological Properties and Heat Transfer Behavior of the Heat Transfer Oil-Copper Oxide (HTO-CuO) Nanofluid in Smooth Tubes,” Experiment. Thermal Fluid Sci. 68, 681–688 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vasu.

Additional information

Original Russian Text © B. Vasu, R.S.R. Gorla, P.V.S.N. Murthy, O. Anwar Bég.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 5, pp. 53–71, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasu, B., Gorla, R.S.R., Murthy, P.V.S.N. et al. Entropy Analysis of a Convective Film Flow of a Power-Law Fluid with Nanoparticles Along an Inclined Plate. J Appl Mech Tech Phy 60, 827–841 (2019). https://doi.org/10.1134/S0021894419050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419050067

Keywords

Navigation