Skip to main content
Log in

Analytical Model for Determining The Effective Size of an Evaporation Region in Pulsed Laser Ablation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper describes the study of the effect of spatial inhomogeneity of surface temperature on the size of a crater forming in the case of pulsed laser ablation. It is assumed that the surface temperature is linearly dependent on laser radiation energy. Analytical expressions determining the effective radius of an evaporation region, characteristic temperatures of the surface on which evaporation occurs, and evaporation depths in the case of the Gaussian distribution of laser radiation energy are derived. It is shown that the analytical dependences obtained are in good agreement with known numerical calculation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser Target Interactions during Pulsed Laser Deposition of Superconducting Thin Films,” J. Appl. Phys. 70 (10), 5433–5439 (1991).

    Article  ADS  Google Scholar 

  2. R. K. Singh and J. Viatella, “Estimation of Plasma Absorption Effects during Pulsed Laser Ablation of High–Critical–Temperature Superconductors,” J. Appl. Phys. 75 (2), 1204–1206 (1994).

    Article  ADS  Google Scholar 

  3. S. Fähler and H.–U. Krebs, “Calculations and Experiments of Material Removal and Kinetic Energy during Pulsed Laser Ablation of Metals,” Appl. Surf. Sci. 96–98, 61–65 (1996).

    Google Scholar 

  4. V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, “Analytical Thermal Model of Ultraviolet Laser Ablation with Single–Photon Absorption in the Plume,” J. Appl. Phys. 78 (2), 1241–1246 (1995).

    Article  ADS  Google Scholar 

  5. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational Study of Heat Transfer and Gas Dynamics in the Pulsed Laser Evaporation of Metals,” J. Appl. Phys. 78 (7), 4696–4709 (1995).

    Article  ADS  Google Scholar 

  6. A. V. Bulgakov and N. M. Bulgakova, “Thermal Model of Pulsed Laser Ablation under the Conditions of Formation and Heating of a Radiation–Absorbing Plasma,” Quant. Electron. 29 (5) 433–437 (1999).

    Google Scholar 

  7. S. Tosto, “Modeling and Computer Simulation of Pulsed–Laser–Induced Ablation,” Appl. Phys. A 68, 439–446 (1999).

    Article  ADS  Google Scholar 

  8. T. Li, Q. Lou, J. Dong, et al., “Ablation of Cobalt with Pulsed UV Laser Radiation,” Appl. Surf. Sci. 172, 356–365 (2001).

    Article  ADS  Google Scholar 

  9. N. M. Bulgakova and A. V. Bulgakov, “Pulsed Laser Ablation of Solids: Transition from Normal Vaporization to Phase Explosion,” Appl. Phys. A 73, 199–208 (2001).

    Article  ADS  Google Scholar 

  10. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “A Model of Laser Ablation with Temperature–Dependent Material Properties, Vaporization, Phase Explosion and Plasma Shielding,” Appl. Phys. A 116, 273–285 (2014).

    Article  ADS  Google Scholar 

  11. O. A. Bulgakova, N. M. Bulgakova, and V. P. Zhukov, “A Model of Nanosecond Laser Ablation of Compound Semiconductors Accounting for Non–Congruent Vaporization,” Appl. Phys. A 101, 53–59 (2010).

    Article  ADS  Google Scholar 

  12. G. Dumitru, V. Romano, and H. P. Weber, “Model and Computer Simulation of Nanosecond Laser Material Ablation,” Appl. Phys. A 79, 1225–1228 (2004).

    Article  ADS  Google Scholar 

  13. N. Mullenix and A. Povitsky, “Comparison of 1–D and 2–D Coupled Models of Gas Dynamics and Heat Transfer for the Laser Ablation of Carbon,” J. Comput. Theor. Nanosci. 3, 1–12 (2006).

    Google Scholar 

  14. M. Shusser, “Two–Dimensional Effects in Laser Ablation of Carbon,” Numer. Heat Transfer. A 56, 459–477 (2009).

    Article  ADS  Google Scholar 

  15. N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A Finite Element Model to Predict the Ablation Depth in Pulsed Laser Ablation,” Thin Solid Films 519, 1421–1430 (2010).

    Article  ADS  Google Scholar 

  16. S. Ghalamdaran, P. Parvin, M. J. Torkamany, and J. S. Zadeh, “Two–Dimensional Simulation of Laser Ablation with 235 Nanosecond Pulses,” J. Laser Appl. 26, 012009(2014).

    Article  ADS  Google Scholar 

  17. S. Sinha, “Nanosecond Laser Ablation for Pulsed Laser Deposition of Yttria,” Appl. Phys. A 112, 855–862 (2013).

    Article  ADS  Google Scholar 

  18. A. A. Morozov, “Analytical Formula for Interpretation of Time–of–Flight Distributions for Neutral Particles under Pulsed Laser Evaporation in Vacuum,” J. Phys. D: Appl. Phys. 48 (19), 195501 (2015).

    Article  ADS  Google Scholar 

  19. D. Sibold and H.M. Urbassek, “Effect of Gas–Phase Collisions in Pulsed–Laser Desorption: A Three–Dimensional Monte Carlo Simulation Study,” J. Appl. Phys. 73 (12), 8544–8551 (1993).

    Article  ADS  Google Scholar 

  20. T. E. Itina, V. N. Tokarev, W. Marine, and M. Autric, “Monte Carlo Simulation Study of the Effects of Nonequilibrium Chemical Reactions During Pulsed Laser Desorption,” J. Chem. Phys. 106 (21), 8905–8912 (1997).

    Article  ADS  Google Scholar 

  21. N. M. Bulgakova, M. Yu. Plotnikov, and A. K. Rebrov, “DSMC Study of the Expansion of Laser Vaporization Products,” Teplofiz. Aeromekh. 5 (3), 421–429 (1998) [Thermophys. Aeromech. 5 (3), 385–392 (1998)].

    Google Scholar 

  22. N. Yu. Bykov and G. A. Lukianov, “Vapor Outflow into Vacuum from a Pulse Source of Moderate Intensity,” Teplofiz. Aeromekh. 9 (2), 247–257 (2002) [Thermophys. Aeromech., No. 2, 235–245 (2002)].

    Google Scholar 

  23. A. A. Morozov, A. B. Evtushenko, and A. V. Bulgakov, “Gas–Dynamic Acceleration of Laser–Ablation Plumes: Hyperthermal Particle Energies under Thermal Vaporization,” Appl. Phys. Lett. 106 (5), 054107 (2015).

    Article  ADS  Google Scholar 

  24. N. Y. Bykov, N. M. Bulgakova, A. V. Bulgakov, and G. A. Loukianov, “Pulsed Laser Ablation of Metals in Vacuum: DSMC Study versus Experiment,” Appl. Phys. A 79, 1097–1100 (2004).

    Article  ADS  Google Scholar 

  25. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy Balance of Pulsed Laser Ablation: Thermal Model Revised,” Appl. Phys. A 79, 1323–1326 (2004).

    Article  ADS  Google Scholar 

  26. A. V. Kirillin, M. D. Kovalenko, M. A. Sheindlin, and V. S. Zhivopistsev, “Experimental Study of Carbon Vapor Pressure in a Temperature Range of 5000–7000 K with the Use of a Stationary Laser Heating,” Teplofiz. Vysok. Temp. 23 (4), 699–706 (1985).

    Google Scholar 

  27. K. Boboridis, G. Pottlacher, and H. Jager, “Determination of the Critical Point of Gold,” Int. J. Thermophys. 20, 1289–1297 (1999).

    Article  Google Scholar 

  28. Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].

  29. V. Morel, A. Bultel, and B. G. Chéron, “The Critical Temperature of Aluminum,” Int. J. Thermophys. 30, 1853–1863 (2009).

    Article  ADS  Google Scholar 

  30. Encyclopaedia of Chemistry Eds. N. S. Zefirova (Bol’shaya Ross. Entsiklopediya, Moscow, 1995) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Morozov.

Additional information

Original Russian Text © A.A. Morozov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 5, pp. 78–86, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.A. Analytical Model for Determining The Effective Size of an Evaporation Region in Pulsed Laser Ablation. J Appl Mech Tech Phy 59, 834–841 (2018). https://doi.org/10.1134/S0021894418050097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418050097

Keywords

Navigation