Skip to main content
Log in

Numerical Analysis of Secondary Flows Around An Oscillating Cylinder

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper considers methods for controlling secondary flows near an oscillating circular cylinder by changing two process control parameters: the dimensionless amplitude and the vibrational Reynolds number. A direct numerical modeling study is performed. It is shown that by varying the indicated parameters in a relatively small range, it is possible not only to intensify mass transfer processes, but also to change the direction of the main secondary flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faraday, “On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces,” Philos. Trans. Roy. Soc. London 121, 299–430 (1831).

    Article  Google Scholar 

  2. Lord Rayleigh, “On the Circulation of Air Observed in Kundt’s Tubes, and on Some Allied Acoustical Problems,” Philos. Trans. Roy. Soc. London 175, 1–21 (1884).

    Article  MATH  Google Scholar 

  3. H. Schlichting, Boundary-Layer Theory (McGraw-Hill, New York, 1974).

    MATH  Google Scholar 

  4. N. Riley and B. Yan, “Inviscid Fluid-Flow around a Submerged-Circular-Cylinder by Free-Surface Traveling Waves,” J. Eng. Math. 30, 587–601 (1996).

    Article  MATH  Google Scholar 

  5. L. D. Rosenberg, Physics and Technology of Powerful Ultrasound (Nauka, Moscow, 1967).

    Google Scholar 

  6. A. P. Burdukov and V. E. Nakoryakov, “On Mass Transfer in an Acoustic Field,” Prikl. Mekh. Tekh. Fiz., No. 2, 62–66 (1965) [J. Appl. Mech. Tech. Phys. No. 2, 51–55 (1965)].

    Google Scholar 

  7. V. I. Rodchenkov and D. A. Sergeev, “Fluid Flows Induced by Focused Ultrasound and Their Use in Single-Crystal Growth,” Prikl. Mekh. Tekh. Fiz. 50 (4), 11–17 (2009) [J. Appl. Mech. Tech. Phys. 50 (4), 553–557 (2009)].

    Google Scholar 

  8. K. D. Frampton, S. E. Martin, and K. Minor, “The Scaling of the Acoustic Streaming for Applications in Micro-Fluidic Devices,” Appl. Acoust. 64, 681–692 (2003).

    Article  Google Scholar 

  9. B. R. Lutz, J. Chen, and D. T. Schwartz, “Microfluidics without Microfabrication,” Proc. Nat. Acad. Sci. 100, 4395–4398 (2003).

    Article  ADS  Google Scholar 

  10. C. Y. Wang, “On High-Frequency Oscillating Viscous Flows,” J. Fluid Mech. 32, 55–68 (1968).

    Article  ADS  MATH  Google Scholar 

  11. E. W. Haddon and N. Riley, “The Steady Flowing Induced Oscillating Circular Cylinders,” Quart. J. Mech. Appl. Math. 32 (2), 265–282 (1979).

    Article  ADS  MATH  Google Scholar 

  12. A. N. Nuriev and A. D. Egorov, “Application of Bifurcation Analysis Methods for Solving Problems of Hydromechanics,” Vestn. Kazan. Tekhnol. Univ., No. 4, 104–109 (2013).

    Google Scholar 

  13. A. N. Nuriev and O. N. Zaitseva, “The Solution of the Problem of Oscillating Motion of a Cylinder in a Viscous Fluid Using the OpenFOAM Code,” Vestn. Kazan. Tekhnol. Univ., No. 8, 116–123 (2013).

    Google Scholar 

  14. M. Tatsuno and P. W. Bearman, “A Visual Study of the Flow around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers and Low Stokes Numbers,” J. Fluid Mech. 211, 157–182 (1990).

    Article  ADS  Google Scholar 

  15. J. R. Elston, H. M. Blackburn, and J. Sheridan, “The Primary and Secondary Instabilities of Flow Generated by an Oscillating Circular Cylinder,” J. Fluid Mech. 550, 359–389 (2006).

    Article  ADS  MATH  Google Scholar 

  16. H. Dütsch, F. Durst, S. Becker, and H. Lienhart, “Low-Reynolds-Number Flow around an Oscillating Circular Cylinder at Low Keulegan–Carpenter Numbers,” J. Fluid Mech. 360, 249–271 (1998).

    Article  ADS  MATH  Google Scholar 

  17. A. G. Egorov, A. M. Kamalutdinov, A. N. Nuriev, and V. N. Paimushin, “Theoretical–Experimental Method for Determining Damping Parameters Based on the Study of Damped Flexural Vibrations of Test Specimens 2. Aerodynamic Component of Damping,” Mekh. Kompozit Mater. 50 (3), 379–396 (2014).

    Google Scholar 

  18. A. N. Nuriev and O. S. Zakharova, “Numerical Modeling of Motion of a Wedge-Shaped Two-Mass Vibro Robot in a Viscous Fluid,” Vychisl. Mekh. Sploshn. Sred 9 (1), 5–15 (2016).

    Google Scholar 

  19. J. R. Morison, M. P. O’Brien, J. W. Johnson, and S. A. Schaaf, “The Force Exerted by Surface Waves on Piles,” Petrol. Trans. 189, 149–157 (1950).

    Google Scholar 

  20. S. Kuhtz, “Experimental Investigation of Oscillatory Flow Around Circular Cylinders at Low Beta Numbers: Ph. D. Thesis” (Univ. London., London, 1996).

    Google Scholar 

  21. P. Suthon and C. Dalton, “Observations on the Honji Instability,” J. Fluids Structures 32, 27–36 (2012).

    Article  ADS  Google Scholar 

  22. A. F. Bertelsen, “An Experimental Investigation of High Reynolds Number Steady Streaming Generated by Oscillating Cylinders,” J. Fluid Mech. 64, 589–697 (1974).

    Article  ADS  Google Scholar 

  23. N. Riley, “The Steady Streaming Induced by a Vibrating Cylinder,” J. Fluid Mech. 68, 801–812 (1975).

    Article  ADS  MATH  Google Scholar 

  24. P. Hall, “On the Stability of Unsteady Boundary Layer on a Cylinder Oscillating Transversely in a Viscous Fluid,” J. Fluid Mech. 146, 347–367 (1984).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Nuriev.

Additional information

Original Russian Text © A.N. Nuriev, A.G. Egorov, O.N. Zaitseva.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 3, pp. 77–87, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuriev, A.N., Egorov, A.G. & Zaitseva, O.N. Numerical Analysis of Secondary Flows Around An Oscillating Cylinder. J Appl Mech Tech Phy 59, 451–459 (2018). https://doi.org/10.1134/S0021894418030082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418030082

Keywords

Navigation