Skip to main content
Log in

Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The elastic buckling analysis and the static postbuckling response of the Euler–Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang and Y. Chen, “Free Vibration and Buckling Analyses of Functionally Graded Beams with Edge Cracks,” Compos. Struct. 83, 48–60 (2008).

    Article  Google Scholar 

  2. L. L. Ke, J. Yang, and S. Kitipornchai, “Postbuckling Analysis of Edge Cracked Functionally Graded Timoshenko Beams under End Shortening,” Compos. Struct. 90, 152–160 (2009).

    Article  Google Scholar 

  3. J. Loya, J. Lopez-Puente, and R. Zaera, J. Fernandez-Saez, “Free Transverse Vibrations of Cracked Nanobeams Using a Nonlocal Elasticity Model,” J. Appl. Phys. 105, 044309 (2009).

    Article  ADS  Google Scholar 

  4. S. M. Hasheminejad, B. Gheshlaghi, Y. Mirzaei, and S. Abbasian, “Free Transverse Vibrations of Cracked Nanobeams with Surface Effects,” Thin Solid Films 519, 2477–2482 (2011).

    Article  ADS  Google Scholar 

  5. K. Torabi and J. N. Dastgerdi, “An Analytical Method for Free Vibration Analysis of Timoshenko Beam Theory Applied to Cracked Nanobeams Using a Nonlocal Elasticity Model,” Thin Solid Films 520, 6595–6602 (2012).

    Article  ADS  Google Scholar 

  6. Sh. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad, and M. H. Sotudeh-Haghighi, “Dynamic Behavior of Thin and Thick Cracked Nanobeams Incorporating Surface Effects,” Composites. Pt B 61, 66–72 (2014).

    Article  Google Scholar 

  7. J. Ch. Hsu, H. L. Lee, and W. J. Chang, “Longitudinal Vibration of Cracked Nanobeams Using Nonlocal Elasticity Theory,” Current Appl. Phys. 11, 1384–1388 (2011).

    Article  ADS  Google Scholar 

  8. J. A. Loya, J. Aranda-Ruiz, and J. Fernandez-Saez, “Torsion of Cracked Nanorods Using a Nonlocal Elasticity Model,” J. Phys. D: Appl. Phys. 47, 115304 (2014).

    Article  ADS  Google Scholar 

  9. F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct. 39, 2731–2743 (2002).

    Article  MATH  Google Scholar 

  10. M. Mohammad-Abadi and A. R. Daneshmehr, “Size Dependent Buckling Analysis of Microbeams Based on Modified Couple Stress Theory with High Order Theories and General Boundary Conditions,” Int. J. Eng. Sci. 74, 1–14 (2014); DOI: 10.1016/j.ijengsci.2013.08.010.

    Article  MathSciNet  Google Scholar 

  11. M. Akbarzadeh Khorshidi and M. Shariati, “Free Vibration Analysis of Sigmoid Functionally Graded Nanobeams Based on a Modified Couple Stress Theory with General Shear Deformation Theory,” J. Brazil. Soc. Mech. Sci. Engng. 38 (8), 2607–2619 (2016); DOI: 10.1007/s40430-015-0388-3.

    Article  Google Scholar 

  12. A. Akbarzadeh Khorshidi, M. Shariati, and S. A. Emam, “Postbuckling of Functionally Graded Nanobeams Based on Modified Couple Stress Theory under General Beam Theory,” Int. J. Mech. Sci. 110, 160–169 (2016); DOI: 10.1016/j.ijmecsci.2016.03.006.

    Article  Google Scholar 

  13. R. D. Mindlin, “Influence of Couple-Stresses on Stress Concentrations,” Exp. Mech. 3, 1–7 (1963).

    Article  Google Scholar 

  14. A. C. M. Chong, F. Yang, D. C. C. Lam, and P. Tong, “Torsion and Bending of Micron-Scaled Structures,” J. Mater. Res. 16, 1052–1058 (2001).

    Article  ADS  Google Scholar 

  15. D. C. C. Lam, F. Yang, A. C. M. Chong, et al., “Experiments and Theory in Strain Gradient Elasticity,” J. Mech. Phys. Solids 51, 1477–1508 (2003).

    Article  ADS  MATH  Google Scholar 

  16. S. K. Park and X. L. Gao, “Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory,” J. Micromech. Microeng. 16, 2355–2359 (2006).

    Article  ADS  Google Scholar 

  17. S. A. Emam, “Analysis of Shear-Deformable Composite Beams in Postbuckling,” Composite Structures 94, 24–30 (2011); DOI: 10.1016/j.compstruct.2011.07.024.

    Article  Google Scholar 

  18. B. Akgoz and O. Civalek, “Strain Gradient Elasticity and Modified Couple Stress Models for Buckling Analysis of Axially Loaded Micro-Scaled Beams,” Int. J. Eng. Sci. 49, 1268–1280 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akbarzadeh Khorshidi.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 4, pp. 171–179, July–August, 2017.

Original Russian Text © M.Akbarzadeh Khorshidi, M. Shariati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh Khorshidi, M., Shariati, M. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory. J Appl Mech Tech Phy 58, 717–724 (2017). https://doi.org/10.1134/S0021894417040174

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417040174

Keywords

Navigation