Skip to main content
Log in

Kinetic physical phenomenological model of creep-rupture strength of metals

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A kinetic model of creep-rupture strength is constructed using the physicomathematical theory of irreversible strains of metals. An algorithm for the mathematical modeling of the processes occurring during tension of samples is proposed. Results of experimental verification of a uniaxial model of creep-rupture strength are given. It is shown that the proposed model differs from available models in that it contains physical structural parameters (scalar densities of dislocations and microcracks) and kinetic equations for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Malinin, Applied Theory of Plasticity and Creep (Mashinostroenie, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

  2. A. M. Lokoshchenko, “Results of Studying Creep and Long-Term Strength of Metals at the Institute of Mechanics at the Lomonosov Moscow State University,” (to Yu. N. Rabotnovs Anniversary), Prikl. Mekh. Tekh. Fiz. 55 (1), 144–165 (2014) [J. Appl. Mech. Tech. Phys. 55 (1), 118–135 (2014)].

    MathSciNet  MATH  Google Scholar 

  3. O. V. Sosnin, A. F. Nikitenko, and B. V. Gorev, “Justification of the Energy Variant of the Theory of Creep and Long-Term Strength of Metals,” Prikl. Mekh. Tekh. Fiz. 51 (4), 188–197 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 608–614 (2010)].

    MATH  Google Scholar 

  4. V. P. Radchenko, M. N. Saushkin, and S. V. Gorbunov, “Energy Version of the Kinetic Equations of Isothermal Creep and Long-Term Strength,” Prikl. Mekh. Tekh. Fiz. 55 (1), 207–217 (2014) [J. Appl. Mech. Tech. Phys. 55 (1), 172–181 (2014)].

    MathSciNet  MATH  Google Scholar 

  5. Yu. N. Rabotnov, Creep Problems in Structural Members (Nauka, Moscow, 1966; North-Holland, Amsterdam, 1969).

    MATH  Google Scholar 

  6. L. M. Kachanov, “Time to Creep Rupture,” Izv. Akad. Nauk. SSSR, Otd. Tekh. Nauk 8, 26–31 (1958).

    Google Scholar 

  7. Yao Hua-Tang, Xuan Fu-Zhen, Wang Zhengdong, and Tu Shan-Tung, “Review of Creep Analysis and Design of Multi-Under Axial Stress States,” Nuclear Eng. Design 237, 1969–1986 (2007).

    Article  Google Scholar 

  8. F. A. Leckie and D. R. Hayhurst, “Creep Rupture of Structures,” Proc. Roy. Soc. London, Ser. A 340 (1622), 323–347 (1974).

    Article  ADS  MATH  Google Scholar 

  9. A. M. Othman, B. F. Dyson, D. R. Hayhurst, and J. Lin, “Continuum Damage Mechanics Modeling of Circumferentially Notched Tension Bars Undergoing Tertiary Creep with Physically Based Constitutive Equations,” Acta Metallurgica Materialia 42 (3), 597–611 (1994).

    Article  Google Scholar 

  10. V. M. Greshnov, “Physicomathematical Theory of Irreversible Deformation of Metals,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 62–74 (2011).

    Google Scholar 

  11. V. M. Greshnov, Fundamentals of the Physicomathematical Theory of Irreversible Deformation of Metals: A Structural-Phenomenological Approach (Palmarium Acad. Publ., Saarbrücken, 2013).

    Google Scholar 

  12. M. A. Shtremel’, Strength of Alloys, Part 1: Lattice Defects (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  13. M. A. Shtremel’, Strength of Alloys, Part 2: Deformation (Moscow Inst. of Steel and Alloys, Moscow, 1997) [in Russian].

    Google Scholar 

  14. V. I. Vladimirov, Physical Nature of Metal Fracture (Moscow, Metallurgy, 1984) [in Russian].

    Google Scholar 

  15. A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  16. V. M. Greshnov, A. V. Botkin, Yu. A. Lavrinenko, and A. V. Napalkov, “Predicting the Fracture of Metals in Cold Plastic Deformation. Part. 2. Effect of Anisotropic Hardening and Experimental Verification of the Model of Plastic Deformation and Fracture,” Probl. Prochnosti, No. 2, 74–84 (1999).

    Google Scholar 

  17. V. M. Greshnov and R. I. Shaikhutdinov, “Physical-Phenomenological Model of the Dislocation Creep of Metals,” Vestnik. Ufim. Gos. Aviats. Tekh. Univ. 17 (1), 33–38.

  18. H. Li, M. W. Fu, J. Lu, and H. Yang, “Ductile Fracture: Experiments and Computations,” Int. J. Plasticity, No. 27, 147–180 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Greshnov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 189–198, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greshnov, V.M., Shaikhutdinov, R.I. & Puchkova, I.V. Kinetic physical phenomenological model of creep-rupture strength of metals. J Appl Mech Tech Phy 58, 165–172 (2017). https://doi.org/10.1134/S0021894417010187

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417010187

Keywords

Navigation