Skip to main content
Log in

Stress- and Strain-Based Models of Creep Damage Accumulation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the work, we develop and implement force and deformation models of the strain and damage accumulation rates in creep with the use of the ANSYS finite-element analysis software. Numerical calculations are performed on a plane plate with a rectilinear through crack under biaxial loading and on a three-dimensional compact specimen under eccentric tension. The obtained stress-strain fields are used to calculate the contour In integral in the vicinity of the crack tip as well as the distribution of the stress intensity factor at the creep stages. It is found that these parameters behave differently depending on the damage function formulation. It is shown that the creep stress intensity factor can be used as a fracture resistance characteristic that is sensitive to the used model and accumulated damage level, the biaxial loading type and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, L.M., Fundamentals of Fracture Mechanics, Moscow: Nauka, 1974.

    Google Scholar 

  2. Rabotnov, Yu.N., Creep Problems in Structural Members, Amsterdam: North-Holland, 1969.

    MATH  Google Scholar 

  3. Brathe, L., Estimation of Kachanov Parameters and Extrapolation from Isothermal Creep Rupture Data, Int. J. Mech. Sci., 1978, vol. 20, pp. 617–624.

    Article  Google Scholar 

  4. Hutchinson, J.W., Constitutive Behavior and Crack Tip Fields for Materials Undergoing Creep-Constrained Grain Boundary Cavitation, Acta Metall., 1983, vol. 31, pp. 1079–1088.

    Article  Google Scholar 

  5. Riedel, H., Fracture at High Temperatures, Berlin: Springer-Verlag, 1987.

    Book  Google Scholar 

  6. Bendick, W., Analysis of Material Exhaustion and Damage by Creep, Int. J. Pres. Vess. Piping, 1991, vol. 47, pp. 57–78.

    Article  Google Scholar 

  7. Budden, J.P. and Ainsworth, R.A., The Effect of Constraint on Creep Fracture Assessments, Int. J. Fract., 1997, vol. 87, pp. 139–149.

    Article  Google Scholar 

  8. Wen, J.F. and Tu, S.T., A Multiaxial Creep-Damage Model for Creep Crack Growth Considering Cavity Growth and Microcrack Interaction, Eng. Fract. Mech., 2014, vol. 123, pp. 197–210.

    Article  Google Scholar 

  9. Meng, Q. and Wang, Z., Creep Damage Models and Applications for Crack Growth Analysis in Pipes: A Review, Eng. Fract. Mech., 2017. doi https://doi.org/10.1016/j.engfracmech.2015.09.055

    Article  Google Scholar 

  10. Panin, V.E., Elsukova, T.F., Surikova, N.S., Popkova, Yu.F., and Borisyuk, D.V., Role of Rotational Deformation Modes in Fracture of High-Purity Aluminum Polycrystals at Low-Temperature Creep, Def. Razr. Mater., 2016, no. 12, pp. 2–9.

  11. Panin, V.E., Egorushkin, V.E., Elsukova, T.F., Surikova, N.S., Pochivalov, Y.I., and Panin, A.V., Multiscale Translation-Rotation Plastic Flow in Polycrystals, Handbook of Mechanics of Materials, Schnauder, S., Chen, C.S., Chawla, K., et al. (Eds.), Singapore: Springer, 2018. doi https://doi.org/10.1007/978-981-10-6855-3_77-1

    Google Scholar 

  12. Hayhurst, D.R., Creep Rupture under Multi-axial States of Stress, J. Mech. Phys. Solids, 1972, vol. 20, pp. 381–390.

    Article  ADS  Google Scholar 

  13. Cocks, A.C.F. and Ashby, M.F., Intergranular Fracture during Power-Law Creep under Multiaxial Stresses, Metal. Sci., 1980, vol. 14, pp. 95–402.

    Google Scholar 

  14. Wang, Z., Zhao, Y., and Kohlstedt, D.L., Dislocation Creep Accommodated by Grain Boundary Sliding in Dunite, J. Earth. Sci., 2010, no. 5, pp. 541–554.

    Article  Google Scholar 

  15. Pisarenko, G.S. and Lebedev, A.A., Deformation and Strength of Materials in the Complex Stress State, Kiev: Naukova Dumka, 1976.

    Google Scholar 

  16. Naumenko, K. and Kostenko, Y., Structural Analysis of a Power Plant Component Using a Stress-Range-Dependent Creep-Damage Constitutive Model, Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 169–174.

    Article  Google Scholar 

  17. Naumenko, K., Kutschke, A., Kostenko, Y., and Rudolf, T., Multi-Axial Thermo-Mechanical Analysis of Power Plant Components from 9–12% Cr Steels at High Temperature, Eng. Fract. Mech., 2011, vol. 78, pp. 1657–1668.

    Article  Google Scholar 

  18. Bassani, J.L. and Hawk, D.E., Influence of Damage on Crack-Tip Fields under Small-Scale-Creep Conditions, Int. J. Fract., 1990, vol. 42, pp. 157–172.

    Article  Google Scholar 

  19. Murakami, S., Hirano, T., and Liu, Y., Asymptotic Fields of Stress and Damage of a Mode I Creep Crack in Steady-State Growth, Int. J. Solids Struct., 2000, vol. 37, pp. 6203–6220.

    Article  MATH  Google Scholar 

  20. Meng, Q. and Wang, Z., Asymptotic Solutions of Mode I Steady Growth Crack in Materials under Creep Conditions, Acta Mech. Solid. Sinica, 2015, vol. 28, pp. 578–591.

    Article  Google Scholar 

  21. Nikbin, K.M., Smith, D.J., and Webster, G.A., An Engineering Approach to the Prediction of Creep Crack Growth, Trans. ASME, 1986, vol. 108, pp. 186–191.

    Google Scholar 

  22. Wasmer, K., Nikbin, K.M., and Webster, G.A., Creep Crack Initiation and Growth in Thick Section Steel Pipes under Internal Pressure, Int. J. Pres. Vess. Piping, 2003, vol. 80, pp. 489–498.

    Article  Google Scholar 

  23. Yatomi, M., Nikbin, K.M., and O’Dowd, N.P., Creep Crack Growth Prediction Using a Damage Based Approach, Int. J. Pres. Vess. Piping, 2003, vol. 80, pp. 573–583.

    Article  Google Scholar 

  24. Yatomi, M. O’Dowd, N.P., Nikbin, K.M., and Webster, G.A., Theoretical and Numerical Modelling of Creep Crack Growth in a Carbon-Manganese Steel, Eng. Fract. Mech., 2006, vol. 73, pp. 1158–1175.

    Article  Google Scholar 

  25. Jing, H., Su, D., Xu, L., Zhao, L., Han, Y., and Sun, R., Finite Element Simulation of Creep-Fatigue Crack Growth Behavior for P91 Steel at 625C Considering Creep-Fatigue Interaction, Int. J. Fatigue, 2017, vol. 98, pp. 41–52.

    Article  Google Scholar 

  26. Ma, H.S., Wang, G.Z., Liu, S., Tu, S.T., and Xuan, F.Z., In-Plane and Out-of-Plane Unified Constraint-Dependent Creep Crack Growth Rate of 316H Steel, Eng. Fract. Mech., 2016, vol. 155, pp. 88–101.

    Article  Google Scholar 

  27. Riedel, H. and Rice, J.R., Tensile Crack in Creeping Solids. ASTM STP 700, Fract. Mech., 1980, pp. 112–130.

  28. He, M.Y. and Hutchinson, J.W., Elastic-Plastic Fracture, Vol. 1, ASTM STP 803, Philadelphia: ASTM, 1983, pp. 227–290.

    Google Scholar 

  29. Saxena, A., Nonlinear Fracture Mechanics for Engineers, Boca Raton: CRC Press LCC, 1998.

    MATH  Google Scholar 

  30. Kim, Y., Contour Integral Calculations for Generalized Creep Laws within ABAQUS, Int. J. Press. Vess. Piping, 2001, vol. 78, pp. 661–666.

    Article  Google Scholar 

  31. Biglari, F., Nikbin, K.M., Goodall, I.W., and Webster, G.A., Determination of Fracture Mechanics Parameters J and C* by Finite Element and Reference Stress Methods for a Semi-Elliptical Flaw in a Plate, Int. J. Press. Vess. Piping, 2003, vol. 80, pp. 565–571.

    Article  Google Scholar 

  32. ASTM E1457-07. Standard Test Method for Measurement of Creep Crack Growth Times in Metals. Annual Book of ASTM Standards, Philadelphia (PA): ASTM, 2007.

    Google Scholar 

  33. ASTM E2760-10. Standard Test Method for Creep-Fatigue Crack Growth Testing. Annual Book of ASTM Standards, Philadelphia (PA): ASTM, 2010.

    Google Scholar 

  34. Katanakha, N.A., Semenov, A.S., and Getsov L.B., Durability of Bends of High-Temperature Steam Lines under the Conditions of Long-Term Operation, Therm. Eng., 2015, no. 4, pp. 260–270.

    Article  ADS  Google Scholar 

  35. Budden, P.J. and Ainsworth, R.A., The Effect of Constraint on Creep Assessments, Int. J. Fract., 1997, vol. 87, pp. 139–149.

    Article  Google Scholar 

  36. Cocks, A.C.F. and Ashby, M.F., On Creep Fracture by Void Growth, Progr. Mats. Sci., 1982, vol. 27, pp. 189–244.

    Article  Google Scholar 

  37. Bendick, W., Analysis of Material Exhaustion and Damage by Creep, Int. J. Press. Vess. Piping, 1991, vol. 47, no. 1, pp. 57–78.

    Article  Google Scholar 

  38. Tumanov, A.V. and Boychenko, N.V., Determination of Control State Parameters at the Crack Tip Based on the Finite Element Method, Trudy Akademenergo, 2015, vol. 4, pp. 90–100.

    Google Scholar 

  39. Nguyen, B.N., Onck, P.R., and van der Giessen, E., On Higher-Order Crack-Tip Fields in Creeping Solids, J. Appl. Mech., 2000, vol. 67, pp. 372–382.

    Article  ADS  MATH  Google Scholar 

  40. Nguyen, B.N., Onck, P.R., and van der Giessen, E., Crack-Tip Constraint Effects on Creep Fracture, Eng. Fract. Mech., 2000, vol. 65, pp. 467–490.

    Article  Google Scholar 

  41. Chao, Y.J., Zhu, X.K., and Zhang, L., Higher-Order Asymptotic Crack-Tip Fields in Power-Law Creeping Material, Int. J. Solids Struct., 2001, vol. 38, pp. 3853–3875.

    Article  MATH  Google Scholar 

  42. Hutchinson, J.W., Singular Behaviour at the End of a Tensile Crack in a Hardening Material, J. Mech. Phys. Solid, 1968, vol. 16, pp. 13–31.

    Article  ADS  MATH  Google Scholar 

  43. Rice, J.R. and Rosengren, G.F., Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solid, 1968, vol. 16, pp. 1–12.

    Article  ADS  MATH  Google Scholar 

  44. Shlyannikov, V.N. and Tumanov, A.V., Characterization of Crack Tip Stress Fields in Test Specimens Using Mode Mixity Parameters, Int. J. Fract., 2014, vol. 185, pp. 49–76.

    Article  Google Scholar 

  45. Shlyannikov, V.N., Tumanov, A.V., and Boychenko, N.V., A Creep Stress Intensity Factor Approach to Creep-Fatigue Crack Growth, Eng. Fract. Mech., 2015, vol. 142, pp. 201–219.

    Article  Google Scholar 

  46. Li, F.Z., Needleman, A., and Shih, C.F., Characterization of Near Tip Stress and Deformation Fields in Creeping Solids, Int. J. Fract., 1988, vol. 36, pp. 163–186.

    Google Scholar 

Download references

Funding

The paper is supported by the Russian Science Foundation, project No. 17-19-01614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shlyannikov.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 3, pp. 70–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyannikov, V.N., Tumanov, A.V. Stress- and Strain-Based Models of Creep Damage Accumulation. Phys Mesomech 22, 514–528 (2019). https://doi.org/10.1134/S1029959919060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919060080

Keywords

Navigation