Skip to main content
Log in

Experimental study of pipelines steel

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This work is focused on an experimental study of E26-2 pipeline steel tearing by mode III. The crack propagation length is obtained as a function of the applied force magnitude for specimens of different thicknesses and widths. The critical stress intensity factor and the essential work needed for crack propagation are determined by the energy balance method. It is demonstrated that these variables depend on the pipeline thickness and specimen geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Irwin, “Fracture Testing of High-Strength Sheet Materials under Conditions Appropriate for Stress Analysis,” Report No. 5486 (U.S. Naval Res. Lab., 1960).

    Google Scholar 

  2. G. C. Sih, “Stress Distribution near Internal Crack Tips for Longitudinal Shear Problems,” J. Appl. Mech. 32, 51–58 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  3. P. K. Poulose, D. L. Jones, and H. Liebowitz, “Determination of Nonlinear Energy Toughness Values for Cyclic Loading Applications,” Eng. Fracture Mech. 8 (1), 293–299 (1976).

    Article  Google Scholar 

  4. R. J. A. Ehart, S. E. Stanzl-Tschegg, and E. K. Tschegg, “Crack Face Interaction and Mixed Mode Fracture of Wood Composites during Mode III Loading,” Eng. Fracture Mech. 61, 253–278 (1998).

    Article  Google Scholar 

  5. A. Szekrenyes, “Improved Analysis of the Modified Split-Antilever Beam for Mode-III Fracture,” Int. J. Mech. Sci. 51, 682–693 (2009).

    Article  Google Scholar 

  6. V. Lazarus and J.-B. Leblond, “Crack Paths under Mixed Mode (I+III) or (I+II+III) Loadings,” C. R. Acad. Sci. Paris, Ser. 2b 326, 171–177 (1998).

    MATH  Google Scholar 

  7. M. F. S. F. de Moura, M. V. C. Fernandez, A. B. de Morais, and R. D. S. G. Campilho, “Numerical Analysis of the Edge Crack Torsion Test for Mode III Interlaminar Fracture of Composite Laminates,” Eng. Fracture Mech. 76, 469–478 (2009).

    Article  Google Scholar 

  8. M. Meriem-Benziane and B. Bou-Said, “Determination of Friction Factor of Algerian Crude Oil during Flow in Pipe-Lines,” Flow Measur. Instrum. 33, 28–35 (2013).

    Article  Google Scholar 

  9. A. A. Carvalho, J. M. A. Rebello, M. P. V. Souza, et al., “Reliability of Non-Destructive Test Techniques in the Inspection of Pipelines Used in the Oil Industry,” Int. J. Pressure Vessels Piping 85, 745–751 (2008).

    Article  Google Scholar 

  10. F. S. Ribeiro, P. R. Souza Mendes, and S. L. Braga, “Obstruction of Pipelines Due to Paraffin Deposition during the Flow of Crude Oils,” Int. J. Heat Mass Transfer 40 (18), 4319–4328 (1997).

    Article  Google Scholar 

  11. S. Frimpong, J. Szymanski, and R. M. M. Changirwa, “Oil Sands Slurry and Waste Recycling Mechanics in a Flexible Pipeline System,” Resources, Conservat. Recycling 39, 33–50 (2003).

    Article  Google Scholar 

  12. S. Cravero and C. Ruggieri, “Correlation of Fracture Behavior in High Pressure Pipelines with Axial Flaws Using Constraint Designed Test Specimens. Pt 1. Plane-Strain Analyses,” Eng. Fracture Mech. 72, 1344–1360 (2005).

    Article  Google Scholar 

  13. R. Banki, H. Hoteit, and A. Firoozabadi, “Mathematical Formulation and Numerical Modeling of Wax Deposition in Pipelines from Enthalpy-Porosity Approach and Irreversible Ihermodynamics,” Int. J. Heat Mass Transfer 51, 3387–3398 (2008).

    Article  Google Scholar 

  14. P. Tang, J. Yang, J. Zheng, et al., “Failure Analysis and Prediction of Pipes Due to the Interaction between Multiphase Flow and Structure,” Eng. Failure Anal. 16, 1749–1756 (2009).

    Article  Google Scholar 

  15. F. Dotta and C. Ruggieri, “Structural Integrity Assessments of High Pressure Pipelines with Axial Flaws Using a Micromechanics Model,” Int. J. Pressure Vessels Piping 81, 761–770 (2004).

    Article  Google Scholar 

  16. V. T. Sapounov, E. M. Morozov, Z. Azari, and G. Pluvinage, “Déchirement Ductile en Statique des Alliages D’aluminium,” Rev. Franc. Mec., No. 3, 239–244 (1994).

    Google Scholar 

  17. A. R. Shahani, M. Rastegar, M. Botshekanan Dehkordi, and H. Moayeri Kashani, “Experimental and Numerical Investigation of Thickness Effect on Ductile Fracture Toughness of Steel Alloy Sheets,” Eng. Fracture Mech. 77, 646–659 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meriem-Benziane.

Additional information

Original Russian Text © M. Meriem-Benziane, H. Zahloul.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 3, pp. 182–189, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meriem-Benziane, M., Zahloul, H. Experimental study of pipelines steel. J Appl Mech Tech Phy 56, 502–509 (2015). https://doi.org/10.1134/S0021894415030219

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894415030219

Keywords

Navigation