Skip to main content
Log in

Method of molecular dynamics in mechanics of deformable solids

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The basic principles of the method of molecular dynamics are analyzed. Symplectic difference schemes for the numerical solution of molecular dynamics equations are considered. Stability is studied, and the errors in the energy conservation law, which are induced by using these schemes, are estimated. Equations of mechanics of continuous media are derived by means of averaging over the volume of an atomic system. Expressions for the stress tensor are obtained by using the virial principle and the method of averaging over the volume. The principles of construction of EAM and MEAM potentials of atomic interaction in crystals are analyzed. Two problems of fracture of copper-molybdenum composites are solved by the method of molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).

    MATH  Google Scholar 

  2. D. Frenkel and B. Smith, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 1996).

    MATH  Google Scholar 

  3. M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Oxford, 2010).

    Google Scholar 

  4. T. Schlick, Molecular Modeling and Simulation (Springer, New York, 2002).

    Book  MATH  Google Scholar 

  5. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  6. A. Hinchliffe, Molecular Dynamics for Beginners (Wiley, Chichester, 2008).

    Google Scholar 

  7. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 2006).

    Google Scholar 

  8. A. Valuev, G. Normal, and V. Podlipchuk, “Method of Molecular Dynamics: Theory and Application,” in Mathematical Modeling. Physical and Chemical Properties of Substances, Ed. by A. A. Samarskii and N. N. Kalitkin) (Nauka, Moscow, 1989), pp. 5–40 [in Russian].

    Google Scholar 

  9. V. M. Fomin and I. F. Golovnev, “Molecular Dynamics Study of Thermomechanical Properties of Nanostructures,” in Mechanics: From Discrete to Continuous, Ed. by V. M. Fomin (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2008), pp. 8–87 [in Russian].

    Google Scholar 

  10. V. Ya. Rudyak, Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media, Vol. 1: Kinetic Theory (Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  11. S. G. Psakh’e, T. Yu. Uvarov, and K. P. Zol’nikov, “New Mechanism of Generation of Defects on Interfaces. Molecular Dynamics Simulation,” Fiz. Mezomekh. 3(3), 69–71 (2000).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1965; Butterworth-Heinemann, 1976).

    Google Scholar 

  13. G. Goldshtein, Classical Mechanics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  14. V. F. Zhuravlev, Fundamentals of Theoretical Mechanics (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  15. A. P. Markeev, Theoretical Mechanics (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  16. A. G. Petrov, Analytical Hydrodynamics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  17. V. I. Arnold, Mathematical Methods of Classical Mechanics (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  18. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  19. H. Lewis, D. Barnes, and K. Melendes, “The Liouville Theorem and Accurate Plasma Simulation,” J. Comput. Phys. 69(2), 267–282 (1987).

    Article  ADS  MATH  Google Scholar 

  20. R. Ruth, “A Canonical Integration Technique,” Nuclear Sci. IEEE Trans. 30(4), 2669–2671 (1983).

    Article  ADS  Google Scholar 

  21. M. Tuckerman and B. J. Berne, “Reversible Multiple Time Scale Molecular Dynamics,” J. Chem. Phys. 97(3), 1990–2001 (1992).

    Article  ADS  Google Scholar 

  22. E. Forest and R. D. Ruth, “Fourth-Order Symplectic Integration,” Physica D 43, 105–117 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. I. P. Omelyan, I. M. Mryglod, and R. Folk, “Optimized Verlet-Like Algorithms for Molecular Dynamics Simulations,” Phys. Rev. E 65, 056706 (2002).

    Article  ADS  Google Scholar 

  24. I. P. Omelyan, I. M. Mryglod, and R. Folk, “Symplectic Analytically Integrable Decomposition Algorithms: Classification, Derivation, and Application to Molecular Dynamics, Quantum and Celestial Mechanics Simulations,” Comput. Phys. Comm. 151, 272–314 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Yu. B. Surius, “Hamilton Methods of the Runge-Kutta Type and Their Variational Interpretation,” Mat. Model. 2(4), 78–87 (1990).

    MathSciNet  Google Scholar 

  26. Yu. B. Surius, “Canonicity of Mappings Generated by the Runge-Kutta Methods in Integrating \(\ddot x = - \partial U/\partial x\) Systems,” Zh. Vychisl. Mat. Mat. Fiz. 29(2), 202–211 (1989).

    Google Scholar 

  27. V. N. Sofronov, K. S. Mokina, and V. E. Shemarulin, “Difference Schemes of Molecular Dynamics. 1. Comparative Analysis of Stability, Accuracy, and Efficiency of Performance,” Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 2, 18–32 (2011).

    Google Scholar 

  28. R. Richtmyer, Principles of Advanced Mathematical Physics (Springer, New York, 1981).

    Book  MATH  Google Scholar 

  29. H. F. Trotter, “On the Product of Semi-Groups of Operators,” Proc. Amer. Math. Soc. 10(4), 545–551 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  30. S. K. Godunov and V. S. Ryaben’kij, “Difference Schemes. An Introduction to the Underlying Theory,” in Studies in Mathematics and Its Applications, Vol. 19 (North-Holland, Amsterdam, 1987).

    Google Scholar 

  31. V. N. Sofronov, K. S. Mokina, and V. E. Shemarulin, “Difference Schemes of Molecular Dynamics. 3. Results of Test Computations,” Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 4, 39–49 (2011).

    Google Scholar 

  32. V. N. Sofronov, K. S. Mokina, and V. E. Shemarulin, “Difference Schemes of Molecular Dynamics. 2. System of Two-Dimensional Tests,” Vopr. Atom. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 3, 3–14 (2011).

    Google Scholar 

  33. I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, “Problems of Application of the Method of Molecular Dynamics in Studying Nonequilibrium Processes in Mesomechanics,” Fiz. Mezomekh. 15(5), 37–49 (2012).

    Google Scholar 

  34. G. E. Normal and V. V. Stegailov, “Stochastic Theory of the Method of the Classical Molecular Dynamics,” Mat. Model. 24(6), 3–44 (2012).

    Google Scholar 

  35. B. V. Chirikov, “Dynamic Chaos in the Classical and Quantum Systems,” Usp. Fiz. Nauk 139(2), 360–363 (1983).

    Article  Google Scholar 

  36. G. M. Zaslavskii, Stochasticity of Dynamic Systems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  37. N. V. Karlov and N. A. Kirichenko, Oscillations, Waves, and Structures (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  38. R. E. Peierels, “The Size of Dislocation,” Proc. Phys. Soc. London, Ser. A 52(289), 34–38 (1940).

    Article  ADS  Google Scholar 

  39. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1987; Pergamon Press, 1980).

    Google Scholar 

  40. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  41. F. Ercolessi, A Molecular Dynamics Primer: Tech. Report (Spring College Comput. Phys. Trieste, 1997), pp. 1–18.

    Google Scholar 

  42. R. J. Hardy, “Formulas for Determining Local Properties in Molecular-Dynamic Simulations Shock Wave,” J. Chem. Phys. 76, 622–628 (1982)

    Article  ADS  Google Scholar 

  43. J. A. Zimmerman, E. B. Webb III, J. J. Hoyt, et al., “Calculation of Stress in Atomistic Simulation,” Modelling Simul. Mater. Sci. Eng. 12, S319–S322 (2004).

    Article  ADS  Google Scholar 

  44. R. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley, New York, 1964).

    Google Scholar 

  45. M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B 24(12), 6443–6453 (1984).

    Article  ADS  Google Scholar 

  46. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom Method Function for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys,” Phys. Rev. B 33(13), 7983–7991 (1986).

    Article  ADS  Google Scholar 

  47. A. Animalu, Intermediate Quantum Theory of Crystalline Solids (Prentice-Hall, Englewood Cliffs, USA, 1977).

    Google Scholar 

  48. A. E. Carlsson, “Beyond Pair Potentials in Elemental Transition Metals and Semiconductors,” Solid State Phys. 43, 1–90 (1990).

    Google Scholar 

  49. M. W. Finnis and J. E. Sinclar, “A Simple Empirical N-Body Potentials for Transition Metals,” Philos. Mag. A 50(1), 45–55 (1984).

    Article  ADS  Google Scholar 

  50. R. A. Jonson, “Alloy Models with the Embedded-Atom Method,” Phys. Rev. B 39(17), 12554–12559 (1989).

    Article  ADS  Google Scholar 

  51. F. Cleri and V. Rosato, “Tight-Binding Potentials for Transitions Metals and Alloys,” Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  52. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic Potentials for Monoatomic Metals from Experimental Data and ab initio Calculations,” Phys. Rev. B 59(5), 3393–3407 (1999).

    Article  ADS  Google Scholar 

  53. R. R. Zope and Y. Mishin, “Interatomic Potentials for Atomistic Simulations of the Ti-Al System,” Phys. Rev. B 68, 024102-1–024102-14 (2003).

    Article  ADS  Google Scholar 

  54. M. I. Baskes, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities,” Phys. Rev. B 46(5), 2727–2742 (1992).

    Article  ADS  Google Scholar 

  55. B.-J. Lee, J.-H. Shim, and M. I. Baskes, “Semiempirical Atomic Potentials for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest-Neighbor Modified Embedded Atom Method,” Phys. Rev. B 68, 144112 (2003).

    Article  ADS  Google Scholar 

  56. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, “Universal Features of the Equation of State of Metal,” Phys. Rev. B 29(6), 2963–2959 (1984).

    Article  ADS  Google Scholar 

  57. S. P. Kiselev, “Compaction of a Mixture of Copper and Molybdenum Nanopowders Modeled by the Molecular Dynamics Method,” Prikl. Mekh. Tekh. Fiz. 49(5), 11–23 (2008) [Appl. Mech. Tech. Phys. 49 (5), 712–722 (2008)].

    Google Scholar 

  58. J. A. Zukas, T. Nicolas, H. F. Swift, L. B. Greszczuk, and D. R. Curran, Impact Dynamics (Wiley and Sons, New York-Chichester-Toronto-Singapure, 1982).

    Google Scholar 

  59. O. V. Belai and S. P. Kiselev, “Numerical Simulation of Deformation and Fracture of a Copper-Molybdenum Nanocomposite Sheet under Uniaxial Tension by the Method of Molecular Dynamics,” Fiz. Mezomekh. 13(4), 25–34 (2010).

    Google Scholar 

  60. J. Belak, “On the Nucleation and Growth of Voids at High Strain-Rates,” J. Comput. Aided Mater. Design 5, 193–206 (1998).

    Article  ADS  Google Scholar 

  61. R. E. Rudd and J. F. Belak, “Void Nucleation and Associated Plasticity in Dynamic Fracture of Polycrystalline Copper: An Atomic Simulation,” Comput. Mater. Sci. 24, 148 (2002).

    Article  Google Scholar 

  62. K. Kadau, T. C. Germann, P. S. Lorndahl, and B. L. Holian, “Atomistic Simulations of Shock Induced Transformations and their Orientation Dependence in BCC Single Crystals,” Phys. Rev. B 72(6), 064120 (2005).

    Article  ADS  Google Scholar 

  63. G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, “Simulation of High-Rate Tension of Crystalline Iron by the Method of Molecular Dynamics,” Teplofiz. Vys. Temp. 45(2), 193–202 (2007).

    Google Scholar 

  64. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., “Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron,” Philos. Mag. 83(35), 3977–3994 (2003).

    Article  ADS  Google Scholar 

  65. S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1–9 (1995); http://lammps.sandia.gov.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kiselev.

Additional information

Original Russian Text © S.P. Kiselev.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 3, pp. 113–139, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, S.P. Method of molecular dynamics in mechanics of deformable solids. J Appl Mech Tech Phy 55, 470–493 (2014). https://doi.org/10.1134/S0021894414030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414030109

Keywords

Navigation