Skip to main content
Log in

Evolution of deviations from the spherical shape of a vapor bubble in supercompression

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper considers the evolution of small deviations of a cavitation bubble from a spherical shape during its single compression under conditions of experiments on acoustic cavitation of deuterated acetone. Vapor motion in the bubble and the surrounding liquid is defined as a superposition of the spherical component and its non-spherical perturbation. The spherical component is described taking into account the nonstationary heat conductivity of the liquid and vapor and the nonequilibrium nature of the vaporization and condensation on the interface. At the beginning of the compression process, the vapor in the bubble is considered an ideal gas with a nearly uniform pressure. In the simulation of the high-rate compression stage, realistic equations of state are used. The non-spherical component of motion is described taking into account the effect of liquid viscosity, surface tension, vapor density in the bubble, and nonuniformity of its pressure. Estimates are obtained for the amplitude of small perturbations (in the form of harmonics of degree n = 2, 3, ... with the wavelength λ = 2πR/n, where R is the bubble radius) of the spherical shape of the bubble during its compression until reaching extreme values of pressure, density, and temperature. These results are of interest in the study of bubble fusion since the non-sphericity of the bubble prevents its strong compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Taleyarkhan, C. D. West, J. S. Cho, et al., “Evidence for Nuclear Emissions During Acoustic Cavitation,” Science 295, 1868–1873 (2002).

    Article  ADS  Google Scholar 

  2. R. P. Taleyarkhan, C. D. West, J. S. Cho, et al., “Additional Evidence of Nuclear Emissions during Acoustic Cavitation,” Phys. Rev. E 69, 036109 (2004).

    Article  ADS  Google Scholar 

  3. Y. Xu and A. Butt, Confirmatory Experiments for Nuclear Emissions during Acoustic Cavitation, Festschrift Edition Celebrating the 65th Birthday of Prof. R. T. Lahey (Jr.), Ed. by R. P. Taleyarkhan, P. Di ’Marco, and G. Lohnert (Elsevier, 2005), Vol. 235, No. 12, pp. 1317–1324.

    Google Scholar 

  4. R. P. Taleyarkhan, C. D. West, R. T. Lahey (Jr.), et al., “Nuclear Emissions during Self-Nucleated Acoustic Cavitation,” Phys. Rev. Lett. 96, 034301 (2006).

    Article  ADS  Google Scholar 

  5. R. I. Nigmatulin, R. P. Taleyarhan, and R. T. Lahey (Jr.), “Fusion Based on Deuterium with Acoustic Cavitation,” Vestn. Akad. Nauk Resp. Bashkortostan 7(4), 3–25 (2002).

    Google Scholar 

  6. R. I. Nigmatulin, R. P. Taleyarhan, and R. T. Lahey (Jr.), “The Evidence for Nuclear Emissions during Acoustic Cavitation Revisited,” J. Power Energy 218-A, 345–364 (2004).

    Article  Google Scholar 

  7. R. I. Nigmatulin, “Nano-Scale Thermonuclear Fusion in Imploding Vapor Bubbles,” Nuclear Eng. Design 235, 1079–1091 (2005).

    Article  Google Scholar 

  8. R. T. Lahey (Jr.), R. P. Taleyarkhan, R. I. Nigmatulin, and I. Sh. Akhatov, “Sonoluminescence and the Search for Sonofusion,” in Advance in Heat Transfer (Academic Press, New York, 2006), Vol. 39.

    Google Scholar 

  9. R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, et al., “The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion,” Phys. Fluid 17, 107106 (2005).

    Article  ADS  Google Scholar 

  10. R. I. Nigmatulin, I. Sh. Akhatov, N. K. Vakhitova, et al., “Mathematical Modeling of a Single Bubble and Multi Bubble Dynamics in a Liquid,” in Proc. of the Int. Conf. on Multiphase Systems, Ufa (Russia), June 15–17, 2000 (Gilem, Ufa, 2000), pp. 294–301.

    Google Scholar 

  11. Y. T. Didenko and K. S. Suslick, “The Energy Efficiency of Formation of Photons, Radicals and Ions during Single-Bubble Cavitation,” Nature 418, 394–397 (2002).

    Article  ADS  Google Scholar 

  12. C. Camara, S. Putterman, and E. Kirilov, “Sonoluminescence from a Single Bubble Driven at One Megahertz,” Phys. Rev. Lett. 92, 124301 (2004).

    Article  ADS  Google Scholar 

  13. G. Vazquez, C. Camara, S. Putterman, and K. Weninger, “Sonoluminescence: Nature’s Smallest Blackbody,” Optics Lett. 26,(9), 575–577 (2001).

    Article  ADS  Google Scholar 

  14. E. R. Forringer, D. Robbins, and J. Martin, “Confirmation of Neutron Production during Self-Nucleated Acoustic Cavitation,” Trans. Amer. Nuclear. Soc. 95, 736 (2006).

    Google Scholar 

  15. E. R. Forringer, D. Robbins, and J. Martin, “Confirmation of Neutron Production during Self-Nucleated Acoustic Cavitation of Deuterated Benzine and Acetone Mixture,” in Proc. of the Int. Conf. Fusion Energy, Albuquerque, November 14, 2006.

  16. W. Bugg, Report of Bubble Fusion Confirmation Experiment: Rep. on Activities on June 2006 Visit (Purdue Univ. West Lafayette, 2006).

    Google Scholar 

  17. R. P. Taleyarkhan, J. Lapinskas, Y. Xu, et al., “Modeling, Analysis and Prediction of Neutron Emission Spectra from Acoustic Cavitation Bubble Fusion Experiments,” Nuclear Eng. Design 238, 2779–2791 (2008).

    Article  Google Scholar 

  18. A. A. Goverdovskii, V. S. Imshennik, and V. P. Smirnov, “On the Prospects of Fusion Energy Based on Bubble Cavitation,” Uspekhi Fiz. Nauk 183(4), 445–448 (2013).

    Article  Google Scholar 

  19. S. Hilgenfeldt, D. Lohse, and M. Brenner, “Phase Diagrams for Sonoluminescing Bubbles,” Phys. Fluids 8(11), 2808–2826 (1996).

    Article  ADS  MATH  Google Scholar 

  20. S. J. Putterman and K. P. Weninger, “Sonoluminescence: How Bubbles Turn Sound into Light,” Annu. Rev. Fluid Mech. 32, 445–476 (2000).

    Article  ADS  Google Scholar 

  21. S. Hilgenfeldt, M. Brenner, S. Grossmann, and D. Lohse, “Analysis of Rayleigh-Plesset Dynamics for Sonoluminescencing Bubbles,” J. Fluid Mech. 365, 171–204 (1998).

    Article  ADS  MATH  Google Scholar 

  22. U. H. Augsdorfer, A. K. Evans, and D. P. Oxley, “Thermal Noise and the Stability of Single Sonoluminescencing Bubbles,” Phys. Rev. E 61, 5278–5286 (2000).

    Article  ADS  Google Scholar 

  23. L. Yuan, C. Y. Ho, M.-C. Chu, and P. T. Leung, “Role of Gas Density in the Stability of Single-Bubble Sonoluminescence,” Phys. Rev. E 64, 016317 (2001).

    Article  ADS  Google Scholar 

  24. H. Lin, B. D. Storey, and A. J. Szeri, “Rayleigh-Taylor Instability in Violently Collapsing Bubbles,” Phys. Fluid 14, 2925–2928 (2002).

    Article  ADS  Google Scholar 

  25. H.-Y. Kwak, S. W. Karng, Y. P. Lee, “Rayleigh-Taylor Instability on a Sonoluminescencing Gas Bubbles,” J. Korean Phys. Soc. 45(4), 951–962 (2005).

    Google Scholar 

  26. H. J. Kull. “Theory of the Rayleigh-Taylor Instability,” Phys. Rep. 206, 197–325 (1991).

    Article  ADS  Google Scholar 

  27. M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25(1), 96–98 (1954).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. M. S. Plesset and T. P. Mitchell, “On the Stability of the Spherical Shape of a Vapor Cavity in a Liquid,” Quart. Appl. Math. 13(4), 419–430 (1956).

    MATH  MathSciNet  Google Scholar 

  29. G. Birkhoff, “Stability of Spherical Bubbles,” Quart. Appl. Math. 13(4), 451–453 (1956).

    MATH  MathSciNet  Google Scholar 

  30. A. I. Eller and L. A. Crum, “Instability of the Motion of a Pulsating Bubble in a Sound Field,” J. Acoust. Soc. Amer. 47(3), 762–767 (1970).

    Article  ADS  Google Scholar 

  31. M. A. Il’gamov, “Qualitative Analysis of the Development of Deviations from Spherical Form due to the Collapse of the Cavity in a Liquid,” Dokl. Akad. Nauk 401(1), 37–40 (2005).

    Google Scholar 

  32. M. A. Il’gamov, “Qualitative Theory of Stability of the Spherical Shape of a Cavity during Compression in a Liquid,” in Toipcal Problems of Continuum Mechanics (Kazan’ State University, Kazan’, 2006), pp. 8–35 [in Russian].

    Google Scholar 

  33. M. A. Il’gamov, “Deviation from the Sphericity of a Vapor Cavity at the Time of its Collapse,” Dokl. Akad. Nauk 440(1), 35–38 (2011).

    MATH  MathSciNet  Google Scholar 

  34. H. Lamb, Hydrodynamics (Dover, New York, 1945).

    Google Scholar 

  35. G. Birkhoff, “Note on Taylor Instability,” Quart. Appl.Math. 12(3), 306–309 (1954).

    MATH  MathSciNet  Google Scholar 

  36. M. S. Plesset and A. Prosperetti, “Bubble Dynamics and Cavitation,” Annu. Rev. Fluid Mech. 9, 145–185 (1977).

    Article  ADS  Google Scholar 

  37. R. I. Nigmatulin, I. Sh. Akhatov, and N. K. Vakhitova, “On the Fluid Compressibility in the Dynamics of a Gas Bubble,” Dokl. Akad. Nauk 348(6), 768–771 (1996).

    MathSciNet  Google Scholar 

  38. H. G. Flynn, “Cavitation Dynamics. 1. A Mathematical Formulation,” J. Acoust. Soc. Amer. 57(6), 1379–1396 (1975).

    Article  ADS  MATH  Google Scholar 

  39. J. B. Keller and M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Amer. 68(2), 628–633 (1980).

    Article  ADS  MATH  Google Scholar 

  40. A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear Bubble Dynamics, J. Acoust. Soc. Amer. 83(2), 502–514 (1986).

    Article  ADS  Google Scholar 

  41. C. C. Wu and P. H. Roberts, “Shock Wave Propagation in a Sonoluminescing Gas Bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).

    Article  ADS  Google Scholar 

  42. C. C. Wu and P. H. Roberts, “A Model of Sonoluminescence,” Proc. Roy. Soc. London, Ser. A 445, 323–349 (1994).

    Article  ADS  Google Scholar 

  43. W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Hydrodynamic Simulations of Bubble Collapse and Picosecond Sonoluminescence,” Phys. Fluids 6(9), 2979–2985 (1994).

    Article  ADS  Google Scholar 

  44. W. C. Moss, D. B. Clarke, and D. A. Young, “Calculated PulseWidths and Spectra of a Single Sonoluminescing Bubble,” Science 276, 1398–1401 (1997).

    Article  Google Scholar 

  45. A. A. Aganin and M. A. Il’gamov, “Oscillations of a Spherical Gas Bubble in a Liquid with the Formation of Shock Waves,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 126–133 (1999).

    Google Scholar 

  46. A. A. Aganin and M. A. Il’gamov, “Numerical Simulation of Gas Dynamics in a Bubble during Its Collapse with the Formation of Shock Waves,” Prikl. Mekh. Tekh. Fiz. 40(2), 101–110 (1999) [J. Appl. Mech. Tech. Phys. 40 (2), 276–284 (1999)].

    MATH  Google Scholar 

  47. A. A. Aganin, R. I. Nigmatulin, M. A. Il’gamov, and I. S. Akhatov, “Dynamics of a Gas Bubble in the Center of a Spherical Liquid Volume,” Dokl. Akad. Nauk 369(2), 182–185 (1999).

    Google Scholar 

  48. A. A. Aganin, “Dynamics of a Small Bubble in a Compressible Fluid,” Int. J. Numer. Methods Fluids 33, 157–174 (2000).

    Article  ADS  MATH  Google Scholar 

  49. A. A. Aganin and M. A. Il’gamov, “Dynamics of a Gas Bubble in the Center of a Spherical Liquid Volume,” Mat. Model. 13(1), 26–40 (2001).

    MATH  MathSciNet  Google Scholar 

  50. A. A. Aganin and M. A. Il’gamov, “Dynamics of a Gas Bubble under Pulsed Compression and Expansion in a Liquid,” Dokl. Akad. Nauk 382(2), 176–180 (2002).

    MATH  Google Scholar 

  51. R. I. Nigmatulin, A. A. Aganin, M. A. Il’gamov, and D. Yu. Toporkov, “Deviation from the Sphericity of a Vapor Bubble in Deuterated Acetone,” Dokl. Akad. Nauk 408(6), 767–771 (2006).

    Google Scholar 

  52. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  53. A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Quart. Appl. Math. 34, 339–352 (1977).

    MATH  Google Scholar 

  54. Y. Hao and A. Prosperetti, “The Effect of Viscosity on the Spherical Stability of Oscillating Gas Bubbles,” Phys. Fluids 11(6), 1309–1317 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. A. A. Aganin, M. A. Il’gamov, and D. Yu. Toporkov, “Effect of Fluid Viscosity on the Decay of Small Distortions of a Gas Bubble from a Spherical Shape,” Prikl. Mekh. Tekh. Fiz. 47(2), 30–39 (2006) [J. Appl. Mech. Tech. Phys. 47 (2), 175–182 (2006)].

    MATH  MathSciNet  Google Scholar 

  56. C. C. Wu and P. H. Roberts, “Bubble Shape Instability and Sonoluminescence,” Phys. Lett. A 250, 131–136 (1998).

    Article  ADS  Google Scholar 

  57. A. A. Aganin and N. A. Khismatullina, “Liquid Vorticity Computation in Non-Spherical Bubble Dynamics,” Int. J. Numer. Methods Fluids 48(2), 115–133 (2005).

    Article  ADS  MATH  Google Scholar 

  58. E. Hairer, S. P. Nersett, and G. Wanner, Solving Ordinary Differential Equations. 1. Nonstiff Problems (Springer-Verlag, Berlin, Heidelberg, 1987).

    Book  Google Scholar 

  59. H. Lin, B. D. Storey, and A. J. Szeri, “Inertially Driven Inhomogeneities in Violently Collapsing Bubbles: The Validity of the Rayleigh-Plesset Equation,” J. Fluid Mech. 452, 145–162 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. S. Nagrath, K. Jansen, and R. T. Lahey (Jr.), “Computation of Incompressible Bubble Dynamics with a Stabilized Finite Element Level Set Method,” Comput. Methods Appl. Mech. Eng. 194, 4565–4587 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. A. A. Aganin, T. F. Khalitova, and N. A. Khismatullina, “Method of Numerical Solution of the Strong Compression of a Non-Spherical Cavitation Bubble,” Vychisl. Technol. 15(1), 14–32 (2010).

    MATH  Google Scholar 

  62. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York (1991).

    Google Scholar 

  63. R. I. Nigmatulin and R. Kh. Bolotnova, “Wide-Range Equation of State of Organic Liquids for Acetone As an Example,” Dokl. Akad. Nauk 415(5), 617–621 (2007).

    Google Scholar 

  64. A. A. Aganin, D. Yu. Toporkov, T. F. Khalitova, and N. A. Khismatullina, “Evolution of Small Distortions of the Spherical Shape of a Vapor Bubble during Its Supercompression,” Mat. Modelirovanie 23(10), 82–96 (2011).

    MATH  Google Scholar 

  65. A. A. Aganin, M. A. Il’gamov, R. I. Nigmatulin, and D. Yu. Toporkov, “Evolution of the Deviation from the Sphericity of a Cavitation Bubble during Its Acoustic Supercompression,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 57–69 (2010).

    Google Scholar 

  66. M. A. Il’gamov, “Expansion-Compression and Stability of a Cavity in a Liquid during Strong Acoustic Excitation,” Dokl. Akad. Nauk 433(2), 178–181 (2010).

    MATH  Google Scholar 

  67. A. A. Aganin, A. I. Davletshin, and D. Yu. Toporkov, “Expansion and Compression of Cavitation Bubbles in Cometary Streamers,” in Proc. 10th Zababakhin Scientific Readings (All-Russian Scientific-Research Institute of Technical Physics, Snezhinsk, 2010); http://www.vniitf.ru/images/zst/2010/sec1/att00131.pdf.

    Google Scholar 

  68. R. I. Nigmatulin, M. A. Il’gamov, and A. A. Aganin, “The Problem of Stability of the Spherical Shape of a Bubble in Supercompression,” Tr. Inst. Mekh. Ufim. Nauch. Ts. Ross. Akad. Nauk, No. 7, 19–37 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Nigmatulin.

Additional information

Original Russian Text © R.I. Nigmatulin, A.A. Aganin, M.A. Il’gamov, D.Yu. Toporkov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 55, No. 3, pp. 82–102, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigmatulin, R.I., Aganin, A.A., Il’gamov, M.A. et al. Evolution of deviations from the spherical shape of a vapor bubble in supercompression. J Appl Mech Tech Phy 55, 444–461 (2014). https://doi.org/10.1134/S0021894414030080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894414030080

Keywords

Navigation