Skip to main content
Log in

Influence of the Tetradecane Temperature and Pressure on the Formation of Radially Converging Shock Waves Inside a Collapsing Cavitation Bubble

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The influence of the tetradecane temperature \(T_{0}\) and pressure \(p_{0}\) in the ranges from 423 to 663 K and from 15 to 70 bar, respectively, on the formation of radially converging shock waves in a collapsing cavitation bubble is studied. The bubble collapse is spherical, at the beginning of collapse the bubble is filled with tetradecane vapor in the saturation state at temperature \(T_{0}\), the initial bubble radius is 500 \(\mu\)m. The dynamics of the vapor in the bubble and the surrounding liquid is governed by the gas dynamics equations taking into account the non-stationary thermal conductivity of both fluids, the nonequilibrium condensation and evaporation on the interface. A special modification of the known wide-range equations of state by Nigmatulin and Bolotnova, suitable for not very high temperatures of the liquid, is applied. It is shown that at any liquid temperature \(T_{0}\) in the range considered, the bubble content is compressed with the formation of radially converging shock (at \(p_{0}\) in the range 15–70 bar) and isentropic (at \(p_{0}\) in the subrange 15–20 bar) waves. The extreme temperatures and pressures of the vapor in the bubble at the boundary of a ‘‘hot’’ core with a radius of 0.25 \(\mu\)m first increase with decreasing \(T_{0}\) and then decrease. The highest values of those extremes in the rectangle area of the (\(T_{0}\), \(p_{0}\)) plane under study are of the order of \(7\cdot 10^{6}\) bar and \(3\cdot 10^{5}\) K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. K. S. Suslick, ‘‘Sonochemistry,’’ Science (Washington, DC, U. S.) 247, 1439–1445 (1990).

    Article  Google Scholar 

  2. E. M. Galimov, A. M. Kudin, V. N. Skorobogatskii, V. G. Plotnichenko, O. L. Bondarev, B. G. Zarubin, V. V. Strazdovskii, A. S. Aronin, A. V. Fisenko, I. V. Bykov, and A. Yu. Barinov, ‘‘Experimental corroboration of the synthesis of diamond in the cavitation process,’’ Dokl. Phys. 49, 150–153 (2004).

    Article  Google Scholar 

  3. R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block, ‘‘Evidence for nuclear emissions during acoustic cavitation,’’ Science (Washington, DC, U. S.) 295, 1868–1873 (2002).

    Article  Google Scholar 

  4. N. S. Khabeev, ‘‘The question of the uniform-pressure condition in bubble dynamics,’’ Fluid Dyn. 45, 208–210 (2010).

    Article  Google Scholar 

  5. S. J. Shaw and P. D. M. Spelt, ‘‘Shock emission from collapsing gas bubbles,’’ J. Fluid Mech. 646, 363–373 (2010).

    Article  Google Scholar 

  6. W. C. Moss, D. B. Clarke, and D. A. Young, ‘‘Calculated pulse widths and spectra of a single sonoluminescing bubble,’’ Science (Washington, DC, U. S.) 276, 1398–1401 (1997).

    Article  Google Scholar 

  7. R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. Lahey, Jr., and R. P. Taleyarkhan, ‘‘The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion,’’ Phys. Fluid 17, 107106 (2005).

    Article  Google Scholar 

  8. A. Bass, S. J. Ruuth, C. Camara, B. Merriman, and S. Putterman, ‘‘Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble,’’ Phys. Rev. Lett. 101, 234301 (2008).

    Article  Google Scholar 

  9. R. I. Nigmatulin, A. A. Aganin, D. Yu. Toporkov, and M. A. Ilgamov, ‘‘Formation of converging shock waves in a bubble upon its compression,’’ Dokl. Phys. 59, 431–435 (2014).

    Article  Google Scholar 

  10. R. I. Nigmatulin, A. A. Aganin, and D. Yu. Toporkov, ‘‘Possibility of cavitation bubble supercompression in tetradecane,’’ Dokl. Phys. 63, 348–352 (2018).

    Article  Google Scholar 

  11. R. I. Nigmatulin, A. A. Aganin, M. A. Ilgamov, and D. Yu. Toporkov, ‘‘Extreme focusing of energy during shock compression of the vapor bubble in hydrocarbon liquids,’’ High Temp. 57, 228–235 (2019).

    Article  Google Scholar 

  12. R. I. Nigmatulin, A. A. Aganin, and D. Yu. Toporkov, ‘‘Dependence of vapor bubble collapse in hot tetradecane on its pressure,’’ Thermophys. Aeromech. 26, 879–887 (2019).

    Article  Google Scholar 

  13. R. I. Nigmatulin and R. Kh. Bolotnova, ‘‘Simplified wide-range equations of state for benzene and tetradecane,’’ High Temp. 55, 199–208 (2017).

    Article  Google Scholar 

  14. R. I. Nigmatulin and D. Yu. Toporkov, ‘‘Modification of equations of state in the metastable region for high-speed vapor compression,’’ Lobachevskii J. Math. 41, 1278–1282 (2020).

    Article  MathSciNet  Google Scholar 

  15. R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-11-00100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Toporkov.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toporkov, D.Y. Influence of the Tetradecane Temperature and Pressure on the Formation of Radially Converging Shock Waves Inside a Collapsing Cavitation Bubble. Lobachevskii J Math 43, 1207–1212 (2022). https://doi.org/10.1134/S1995080222080340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080340

Keywords:

Navigation