Skip to main content
Log in

Limit criteria and a model for inelastic deformation of anisotropic media

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Limit criteria corresponding to the critical values of the specific strain energy and various eigenmoduli of anisotropic media were proposed based on a representation of the elastic tensor in terms of eigenmoduli and eigenstates. Examples of limit (plasticity) criteria independent of the safe stress state are given. Governing equations for the limiting strain of anisotropic materials were obtained using the concept of eigenstates. The corresponding equations for isotropic materials of classes {1, 5} and {5, 1} and materials of the cubic system of various classes are considered. Limit criteria can vary considerably depending on the class of anisotropic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Filonenko-Borodich, Mechanical Theories of Strength [in Russian], Izd. Mosk. Univ., Moscow (1961).

    Google Scholar 

  2. I. I. Gol’denblat and V. A. Kopnov, Strength and Plasticity Criteria for Structural Materials [in Russian], Mashinostroenie, Moscow (1968).

    Google Scholar 

  3. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in a Complex Stress State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  4. B. Paul, “Macroscopic criteria for plastic flow and brittle fracture,” in: H. Leibowitz (ed.), Fracture: An Advanced Treatise, Vol. 2, Academic Press, London-New York (1968).

    Google Scholar 

  5. E. M. Woo, “Phenomenological fracture criteria for anisotropic media,” in: Composite Materials, Vol. 2: Mechanics of Composite Materials [Russian translation], Mir, Moscow (1978), pp. 401–491.

    Google Scholar 

  6. J. Rychlewski, “Decomposition of the elastic energy and limit criteria,” Usp. Mekh., 7, No. 3, 51–80 (1984).

    Google Scholar 

  7. Yu Mao-hong, “Advances in strength theories for materials under complex stress state in 20th century,” Appl. Mech. Rev., 55, No. 3, 169–218 (2002).

    Article  ADS  Google Scholar 

  8. A. I. Chanyshev, “Plasticity of anisotropic media,” J. Appl. Mech. Tech. Phys., No. 2, 311–314 (1984).

  9. A. S. Kravchuk, “On the theory of plasticity of anisotropic materials,” in: Strength Calculations (collected scientific papers) [in Russian], No. 27, Mashinostroenie, Moscow (1986), pp. 21–29.

    Google Scholar 

  10. B. D. Annin, “Models of elastoplastic deformation of transversely isotropic materials,” Sib. Zh. Indust. Mat., 2, No. 2, 3–7 (1999).

    MATH  Google Scholar 

  11. H. L. Schreyer and Q. H. Zuo, “Anisotropic yield surfaces based on elastic projection operators,” Trans. ASME, J. Appl. Mech., 62, No. 3, 780–785 (1995).

    Article  MATH  ADS  Google Scholar 

  12. Y. P. Arramon, M. M. Mechrabadi, D. W. Martin, and S. C. Cowin, “A multidimensional anisotropic strength criterion based on Kelwin modes,” Int. J. Solids Struct., 37, No. 21, 2915–2935 (2000).

    Article  MATH  Google Scholar 

  13. K. Kowalczyk and J. Ostrowska-Maciejewska, “Energy-based limit condition for transversally isotropic solids,” Arch. Mech., 54, Nos. 5/6, 497–523 (2002).

    MATH  MathSciNet  Google Scholar 

  14. B. D. Annin and N. I. Ostrosablin, “Anisotropy of elastic properties of materials,” J. Appl. Mech. Tech. Phys., 49, No. 6, 998–1014 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  15. N. I. Ostrosablin, “On the classification of anisotropic materials,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 71, Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk (1985), pp. 82–96.

    Google Scholar 

  16. N. I. Ostrosablin, “On the structure of the elastic tensor and the classification of anisotropic materials,” J. Appl. Mech. Tech. Phys., No. 4, 600–607 (1986).

    Google Scholar 

  17. N. I. Ostrosablin, “Elastic eigenmoduli and eigenstates for materials of crystallographic systems,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 75, Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk (1986), pp. 113–125.

    Google Scholar 

  18. N. I. Ostrosablin, “Functional relation between of two symmetric second-rank tensors,” J. Appl. Mech. Tech. Phys., 48, No. 5, 734–736 (2007).

    Article  ADS  Google Scholar 

  19. A. A. Il’yushin, “On the relation between stresses and small strains in continuum mechanics,” Prikl. Mat. Mekh., 18, No. 6, 641–666 (1954).

    Google Scholar 

  20. A. M. Zhukov, “On Poisson’s ratio in the plastic region,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12, 86–91 (1954).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Ostrosablin.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 52, No. 6, pp. 165–176, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrosablin, N.I. Limit criteria and a model for inelastic deformation of anisotropic media. J Appl Mech Tech Phy 52, 986–996 (2011). https://doi.org/10.1134/S0021894411060174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894411060174

Key words

Navigation