Skip to main content
Log in

Implementation of a Quantum Generator of Random Numbers: Extraction of Provably Random Bit Sequences from Correlated Markov Chains

  • QUANTUM INFORMATICS
  • Published:
JETP Letters Aims and scope Submit manuscript

An experimental implementation of a quantum random number generator has been proposed. A new method for the extraction of provably random bit sequences from correlated sequences of photocounts, which are Markov chains, has been implemented experimentally for the first time. The reached generation rate of bits 0 and 1 is 154.5 Mbit/s. Fundamental natural constraints on the achievement of perfect true randomness are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. We also note that the Paley–Wiener theorem [15] has an additional fundamental consequence: the spontaneous decay (e.g., α decay) cannot be exponential in time; it deviates from an exponential law at small and large times (see, e.g., details in [16]). Due to deviation from the exponential law, the statistic of counts of any physical process fundamentally cannot be exactly Poisson. Processes of α decay were used many years ago to generate random numbers but not widely because of a low rate and technically inconvenient implementation. For this reason, the use of such physical processes to develop random number generators requires particular attention. Furthermore, it was shown in [17] that the Paley–Wiener theorem together with the particle identity principle leads to a fundamental limit of the rate of generation of true random sequences of bits 0 и 1. In the quantum region, the spectrum of the Hamiltonian of a stable system is bounded from below; one of the consequence of this property is the absence of a Hermitian time operator in quantum mechanics (time is a parameter).

REFERENCES

  1. M. Herrero-Collantes and J. Carlos Garcia-Escartin, Rev. Mod. Phys. 89, 015004 (2017).

  2. I. M. Arbekov and S. N. Molotkov, Phys. Usp. 64, 617 (2021).

    Article  ADS  Google Scholar 

  3. R. Shaltiel, Lect. Notes Comput. Sci. 6756, 21 (2011).

    Article  Google Scholar 

  4. A. De, Ch. Portmann, Th. Vidick, and R. Renner, arXiv: 0912.5514 [quant-ph].

  5. M. Blum, Combinatorica 6, 97 (1986).

    Article  MathSciNet  Google Scholar 

  6. J. von Neumann, Nat. Bur. Stand. Appl. Math. Ser. 12, 36 (1951).

    Google Scholar 

  7. W. Hoeffding and G. Simon, Ann. Math. Stat. 41, 341 (1970).

    Article  Google Scholar 

  8. Q. Stout and B. Warren, Ann. Probab. 12, 212 (1984).

    Article  MathSciNet  Google Scholar 

  9. Y. Peres, Ann. Stat. 20, 590 (1992).

    Article  Google Scholar 

  10. P. Elias, Ann. Math. Stat. 43, 865 (1972).

    Article  Google Scholar 

  11. D. Knuth and A. Yao, in Algorithms and Complexity: New Directions and Recent Results (Academic Press, New York, 1976), p. 357.

    Google Scholar 

  12. T. S. Han and M. Hoshi, IEEE Trans. Inform. Theory 43, 599 (1997).

    Article  MathSciNet  Google Scholar 

  13. P. A. Samuelsons, J. Am. Stat. Assoc. 63 (324), 1526 (1968).

    Article  Google Scholar 

  14. H. Zhou and J. Bruck, IEEE Trans. Inform. Theory 58, 2490 (2012).

    Article  MathSciNet  Google Scholar 

  15. N. Wiener and R. Paley, Fourier Transforms in the Complex Domain (Am. Math. Soc., Providence, RI, 1934).

    Book  Google Scholar 

  16. L. Fonda, G. C. Ghirardi, and A. Rimii, Rep. Prog. Phys. 41, 587 (1978).

    Article  ADS  Google Scholar 

  17. S. N. Molotkov, Laser Phys. Lett. 20, 035202 (2023).

  18. I. M. Arbekov and S. N. Molotkov, Phys. Usp. 67 (2024, in press). https://doi.org/10.3367/UFNe.2024.02.039658

  19. V. F. Babkin, Probl. Pered. Inform. 7, 13 (1971).

    Google Scholar 

  20. S. N. Molotkov, JETP Lett. 105, 374 (2017).

    Google Scholar 

  21. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, S. P. Kulik, and S. N. Molotkov, J. Exp. Theor. Phys. 126, 728 (2018).

    Article  ADS  Google Scholar 

  22. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, S. P. Kulik, S. N. Molotkov, E. Popova, and S. Vinogradov, Phys. Lett. 14, 125207 (2017).

  23. K. A. Balygin, V. I. Zaitsev, A. N. Klimov, S. P. Kulik, and S. N. Molotkov, JETP Lett. 106, 470 (2017).

    Article  ADS  Google Scholar 

  24. A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications. http://csrc.nist.gov/rng/SP800-22b.pdf.

  25. G. I. Ivchenko and Yu. I. Medvedev, Introduction to Mathematical Statistics (LKI, Moscow, 2010; URSS, Moscow, 1994).

Download references

ACKNOWLEDGMENTS

We are grateful to I.M. Arbekov, A.N. Klimov, A.A. Kalinkin, V.O. Mironkin, V.A. Kiryukhin (SFB laboratory), and A.V. Urivskii (InfoTeks) for active cooperation. We are separately grateful to S.S. Negodyaev for assistance in the implementation of NIST tests.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Balygin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balygin, K.A., Kulik, S.P. & Molotkov, S.N. Implementation of a Quantum Generator of Random Numbers: Extraction of Provably Random Bit Sequences from Correlated Markov Chains. Jetp Lett. 119, 538–548 (2024). https://doi.org/10.1134/S0021364024600575

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364024600575

Navigation