Skip to main content
Log in

Comparison of the Gap Structure of Underdoped and Overdoped Superconducting Pnictides BaFe2 – xNixAs2

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We compare the structure of the superconducting order parameter of overdoped BaFe1.88Ni0.12As2 and underdoped BaFe1.92Ni0.08As2 pnictides with similar \({{T}_{c}} \approx 18.0{-} 18.3\) K. Using incoherent multiple Andreev reflection effect spectroscopy, we directly determined the magnitudes of the two microscopic superconducting order parameters: the small superconducting gap and probably anisotropic large gap, their characteristic ratios and temperature dependences. We discuss similarity and difference in the gap structure, as well as possible influence of antiferromagnetic phase to superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. Lu, Phase Diagram and Magnetic Excitations of BaFe 2x Ni x As 2 : A Neutron Scattering Study, Springer Theses (Springer, 2017). https://doi.org/10.1007/978-981-10-4998-9

    Book  Google Scholar 

  2. S. Ideta, T. Yoshida, I. Nishi, et al., Phys. Rev. Lett. 110, 107007 (2013).

  3. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

  4. H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).

  5. T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 88, 045115 (2013).

  6. F. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, J. Phys. Soc. Jpn. 78, 013711 (2009).

  7. F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, P. Cheng, B. Shen, and H.-H. Wen, Phys. Rev. Lett. 104, 037001 (2010).

  8. Yu. A. Aleshchenko, A. V. Muratov, G. A. Ummarino, S. Richter, A. A. Thomas, and R. Hühne, J. Phys.: Condens. Matter 33, 045601 (2021).

  9. M. Abdel-Hafiez, Y. Zhang, Z. He, J. Zhao, C. Bergmann, C. Krellner, C.-Ga. Duan, X. Lu, H. Luo, P. Dai, and X.-J. Chen, Phys. Rev. B 91, 024510 (2015).

  10. B. Zeng, B. Shen, H. Luo, G. Mu, P. Cheng, H. Yang, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 85, 224514 (2012).

  11. K. S. Pervakov, V. A. Vlasenko, E. P. Khlybov, A. Zaleski, V. M. Pudalov, and Yu. F. Eltsev, Supercond. Sci. Technol. 26, 015008 (2013).

  12. Yu. F. Elstsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, Phys. Usp. 57, 827 (2014).

    Article  ADS  Google Scholar 

  13. V. A. Vlasenko, O. A. Sobolevskiy, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, and Yu. F. Eltsev, JETP Lett. 107, 119 (2018).

    Article  ADS  Google Scholar 

  14. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    Article  ADS  Google Scholar 

  15. S. A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).

    Article  ADS  Google Scholar 

  16. Z. Popović, S. A. Kuzmichev, and T. E. Kuzmicheva, J. Appl. Phys. 128, 013901 (2020).

  17. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).

    Article  ADS  Google Scholar 

  18. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  19. G. B. Arnold, J. Low Temp. Phys. 68, 1 (1987).

    Article  ADS  Google Scholar 

  20. D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).

    Article  ADS  Google Scholar 

  21. U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B 50, 6317 (1994).

    Article  ADS  Google Scholar 

  22. T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638 (1993).

    Article  ADS  Google Scholar 

  23. A. V. Sadakov, A. V. Muratov, S. A. Kuzmichev, O. A. Sobolevskiy, B. I. Massalimov, A. R. Prischepa, V. M. Mikhailov, K. S. Pervakov, V. A. Vlasenko, and T. E. Kuzmicheva, JETP Lett. 116, 708 (2022).

    Article  ADS  Google Scholar 

  24. A. Yamamoto, J. Jaroszynski, C. Tarantini, L. Balicas, J. Jiang, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Appl. Phys. Lett. 94, 062511 (2009).

  25. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, JETP Lett. 112, 786 (2020).

    Article  ADS  Google Scholar 

  26. T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, and V. A. Vlasenko, Phys. Rev. B 104, 174512 (2021).

  27. S. A. Kuzmichev, K. S. Pervakov, V. A. Vlasenko, A. Yu. Degtyarenko, S. Yu. Gavrilkin, and T. E. Kuzmicheva, JETP Lett. 116, 723 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M.M. Korshunov, Yu.A. Aleschenko, and V.M. Pudalov for fruitful discussions. The measurements were partly performed using the equipment of the Shared Facility Center, Lebedev Physical Institute.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0023-2019-0005 “Physics of High-Temperature Superconductors and New Quantum Materials”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuzmicheva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, T.E., Kuzmichev, S.A., Pervakov, K.S. et al. Comparison of the Gap Structure of Underdoped and Overdoped Superconducting Pnictides BaFe2 – xNixAs2. Jetp Lett. 118, 514–519 (2023). https://doi.org/10.1134/S0021364023602750

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023602750

Navigation