Skip to main content
Log in

Band Flattening and Landau Level Merging in Strongly-Correlated Two-Dimensional Electron Systems

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We review recent experimental results indicating the band flattening and Landau level merging at the chemical potential in strongly-correlated two-dimensional (2D) electron systems. In ultra-clean, strongly interacting 2D electron system in SiGe/Si/SiGe quantum wells, the effective electron mass at the Fermi level increases monotonically in the entire range of electron densities, while the energy-averaged mass saturates at low densities. The qualitatively different behavior of the two masses reveals a precursor to the interaction-induced single-particle spectrum flattening at the chemical potential in this electron system, in which case the fermion “condensation” at the Fermi level occurs in a range of momenta, unlike the condensation of bosons. In strong magnetic fields, perpendicular to the 2D electron layer, a similar effect of different fillings of quantum levels at the chemical potential—the merging of the spin- and valley-split Landau levels at the chemical potential—is observed in Si inversion layers and bilayer 2D electron system in GaAs. Indication of merging of the quantum levels of composite fermions with different valley indices is also reported in ultra-clean SiGe/Si/SiGe quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Pergamon, Oxford, 1980; Nauka, Moscow, 1978).

  2. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  3. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  4. P. Nozières, J. Phys. I (Fr.) 2, 443 (1992).

    Article  ADS  Google Scholar 

  5. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B 78, 075120 (2008).

  6. V. R. Shaginyan, M. Y. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).

    Article  ADS  Google Scholar 

  7. J. Clark, M. Zverev, and V. Khodel, Ann. Phys. 327, 3063 (2012).

    Article  ADS  Google Scholar 

  8. M. V. Zverev, V. A. Khodel, and S. S. Pankratov, JETP Lett. 96, 192 (2012).

    Article  ADS  Google Scholar 

  9. T. T. Heikkila, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).

    Article  ADS  Google Scholar 

  10. Novel Superfluids, Ed. by K. Bennemann and J. Ketterson (Oxford Univ. Press, Oxford, 2013).

    MATH  Google Scholar 

  11. S. Peotta and P. Torma, Nat. Commun. 6, 8944 (2015).

    Article  ADS  Google Scholar 

  12. G. E. Volovik, Phys. Scr. T 164, 014014 (2015).

  13. M. Amusia, K. Popov, V. Shaginyan, and W. Stefanowicz, Theory of Heavy-Fermion Compounds (Springer Int., New York, 2015).

    Book  Google Scholar 

  14. A. Camjayi, K. Haule, V. Dobrosavljević, and G. Kotliar, Nat. Phys. 4, 932 (2008).

    Article  Google Scholar 

  15. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

  16. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, Sci. Rep. 7, 14539 (2017).

    Article  ADS  Google Scholar 

  17. V. A. Khodel, J. W. Clark, H. Li, and M. V. Zverev, Phys. Rev. Lett. 98, 216404 (2007).

  18. A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).

  19. A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, JETP Lett. 102, 36 (2015).

    Article  ADS  Google Scholar 

  20. V. T. Dolgopolov, M. Y. Melnikov, A. A. Shashkin, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, Phys. Rev. B 103, L161302 (2021).

  21. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).

    Article  ADS  Google Scholar 

  22. A. A. Shashkin, Phys. Usp. 48, 129 (2005).

    Article  ADS  Google Scholar 

  23. V. M. Pudalov, Phys. Usp. 49, 203 (2006).

    ADS  Google Scholar 

  24. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

  25. A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).

  26. V. T. Dolgopolov, JETP Lett. 101, 282 (2015).

    Article  ADS  Google Scholar 

  27. A. Y. Kuntsevich, Y. V. Tupikov, V. M. Pudalov, and I. S. Burmistrov, Nat. Commun. 6, 7298 (2015).

    Article  ADS  Google Scholar 

  28. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov, V. T. Dolgopolov, and Z. D. Kvon, Phys. Rev. B 76, 241302 (2007).

  29. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, Appl. Phys. Lett. 106, 092102 (2015).

  30. M. Y. Melnikov, V. T. Dolgopolov, A. A. Shashkin, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, J. Appl. Phys. 122, 224301 (2017).

  31. T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).

    Article  ADS  Google Scholar 

  32. S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. Lett. 85, 2164 (2000).

    Article  ADS  Google Scholar 

  33. G. Fleury and X. Waintal, Phys. Rev. B 81, 165117 (2010).

  34. T. M. Lu, L. Sun, D. C. Tsui, S. Lyon, W. Pan, M. Mühlberger, F. Schäffler, J. Liu, and Y. H. Xie, Phys. Rev. B 78, 233309 (2008).

  35. V. T. Renard, B. A. Piot, X. Waintal, G. Fleury, D. Cooper, Y. Niida, D. Tregurtha, A. Fujiwara, Y. Hirayama, and K. Takashina, Nat. Commun. 6, 7230 (2015).

    Article  ADS  Google Scholar 

  36. V. M. Pudalov, M. E. Gershenson, and H. Kojima, Phys. Rev. B 90, 075147 (2014).

  37. V. T. Dolgopolov, Phys. Usp. 62, 633 (2019).

    Article  ADS  Google Scholar 

  38. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S. V. Kravchenko, S.-H. Huang, and C. W. Liu, JETP Lett. 100, 114 (2014).

    Article  ADS  Google Scholar 

  39. M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, A. Y. X. Zhu, S. V. Kravchenko, S.-H. Huang, and C. W. Liu, Phys. Rev. B 99, 081106(R) (2019).

  40. V. T. Dolgopolov, A. A. Shashkin, E. V. Deviatov, F. Hastreiter, M. Hartung, A. Wixforth, K. L. Campman, and A. C. Gossard, Phys. Rev. B 59, 13235 (1999).

    Article  ADS  Google Scholar 

  41. A. G. Davies, C. H. W. Barnes, K. R. Zolleis, J. T. Nicholls, M. Y. Simmons, and D. A. Ritchie, Phys. Rev. B 54, R17331 (1996).

  42. E. V. Deviatov, V. S. Khrapai, A. A. Shashkin, V. T. Dolgopolov, F. Hastreiter, A. Wixforth, K. L. Campman, and A. C. Gossard, JETP Lett. 71, 496 (2000).

    Article  ADS  Google Scholar 

  43. C. A. Duarte, G. M. Gusev, A. A. Quivy, T. E. Lamas, A. K. Bakarov, and J. C. Portal, Phys. Rev. B 76, 075346 (2007).

  44. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  45. B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).

    Article  ADS  Google Scholar 

  46. J. K. Jain, Science (Washington, DC, U. S.) 266, 1199 (1994).

    Article  ADS  Google Scholar 

  47. T. Chakraborty, Adv. Phys. 49, 959 (2000).

    Article  ADS  Google Scholar 

  48. J. K. Jain, Composite Fermions (Cambridge Univ. Press, New York, 2007).

    Book  Google Scholar 

  49. V. T. Dolgopolov, M. Y. Melnikov, A. A. Shashkin, S.‑H. Huang, C. W. Liu, and S. V. Kravchenko, JETP Lett. 107, 794 (2018).

    Article  ADS  Google Scholar 

  50. S. V. Kravchenko, A. A. Shashkin, D. A. Bloore, and T. M. Klapwijk, Solid State Commun. 116, 495 (2000).

    Article  ADS  Google Scholar 

  51. V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, Phys. Rev. Lett. 91, 126404 (2003).

  52. V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, Phys. Rev. B 67, 113305 (2003).

Download references

Funding

The authors from the Institute of Solid State Physics were supported by the RF State task. S.V. Kravchenko was supported by the U.S. National Science Foundation, grant no. 1904024.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Shashkin or S. V. Kravchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolov, V.T., Melnikov, M.Y., Shashkin, A.A. et al. Band Flattening and Landau Level Merging in Strongly-Correlated Two-Dimensional Electron Systems. Jetp Lett. 116, 156–166 (2022). https://doi.org/10.1134/S0021364022601257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601257

Navigation