Skip to main content
Log in

Magnetic Edge States in Transition Metal Dichalcogenide Monolayers

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

We developed theory of the magnetic edge states in a half-plane of transition metal dichalcogenide monolayer. The main qualitative feature of such system that distinguishes it from an unbounded plane is “tau-splitting”; i.e., lifting of the valley degeneracy in an energy spectrum. Interband optical transitions are characterized by the violation of the selection rules established for the same transitions in an unbounded monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Khaikin, Sov. Phys. JETP 12, 152 (1961).

    Google Scholar 

  2. M. S. Khaikin, Sov. Phys. Usp. 11, 785 (1969).

    Article  ADS  Google Scholar 

  3. T.-W. Nee and R. E. Prange, Technical Report No. 668 (Univ. Maryland, 1967).

  4. T.-W. Nee and R. E. Prange, Phys. Lett. A 25, 582 (1967).

    Article  ADS  Google Scholar 

  5. T.-W. Nee and R. E. Prange, Phys. Rev. 168, 779 (1968).

    Article  ADS  Google Scholar 

  6. R. E. Prange, Phys. Rev. 171, 737 (1968).

    Article  ADS  Google Scholar 

  7. T. W. Nee, J. F. Koch, and R. E. Prange, Phys. Rev. 174, 758 (1968).

    Article  ADS  Google Scholar 

  8. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  Google Scholar 

  9. A. H. Macdonald and P. Středa, Phys. Rev. B 29, 1616 (1984).

    Article  ADS  Google Scholar 

  10. D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96, 176803 (2006).

  11. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).

    Book  Google Scholar 

  12. I. Bartoš and B. Rosenstein, Phys. A 27, 153 (1994).

    Article  MathSciNet  Google Scholar 

  13. J. P. Vigneron and M. Auslos, Phys. Rev. B 18, 1464 (1979).

    Article  ADS  Google Scholar 

  14. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

  15. V. V. Enaldiev, Phys. Rev. B 96, 235429 (2017).

  16. M. V. Berry and R. J. Mondragon, Proc. R. Soc. London, Ser. A 412, 53 (1987).

    Article  ADS  Google Scholar 

  17. D. Oliveira, J. Fu, L. Villegas-Lelovsky, A. C. Dias, and F. Qu, Phys. Rev. B 93, 205422 (2016).

  18. F. Qu, A. C. Dias, J. Fu, L. Villegas-Lelovsky, and D. L. Azevedo, Sci. Rep. 7, 41044 (2017).https://doi.org/10.1038/srep41044

  19. F. Rose, M. O. Goerbig, and F. Piechon, Phys. Rev. B 88, 125438 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Magarill.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

Let us make, in Eq. (13), transformation \(E,\tau \to - E, - \tau \):

$$\begin{gathered} {{D}_{{q - \theta ( - \tau )}}}(z) \\ + \;\frac{\Omega }{{\Delta {\text{/}}2 - E}}{{D}_{{q - \theta (\tau )}}}(z)[\theta ( - \tau ) - q\theta (\tau )] = 0. \\ \end{gathered} $$
(17)

The energy spectrum corresponding to Eq. (10) consists of two bands: conduction band and valence band. We will consider Eq. (13) in the conduction band (i.e., for \(E > 0\)) and Eq. (13) in the valence band (i.e., for \(E < 0\)). Further, one can rewrite Eqs. (13) and (17) by explicitly introducing the band and valley indices:

$$\begin{gathered} {{D}_{{{{q}^{{({\text{c}},\tau )}}} - \theta ( - \tau )}}}(z) + \frac{\Omega }{{\Delta {\text{/}}2 + {{E}^{{({\text{c}},\tau )}}}}}{{D}_{{{{q}^{{({\text{c}},\tau )}}} - \theta ( - \tau )}}}(z) \\ \times \;\left[ {\theta (\tau ) - {{q}^{{({\text{c}},\tau )}}}\theta ( - \tau )} \right] = 0; \\ \end{gathered} $$
(18)
$$\begin{gathered} {{D}_{{{{q}^{{({\text{v}}, - \tau )}}} - \theta (\tau )}}}(z) + \frac{\Omega }{{\Delta {\text{/}}2 - {{E}^{{({\text{v}}, - \tau )}}}}}{{D}_{{{{q}^{{({\text{v}}, - \tau )}}} - \theta (\tau )}}}(z) \\ \times \;\left[ {\theta ( - \tau ) - {{q}^{{({\text{v}}, - \tau )}}}\theta (\tau )} \right] = 0. \\ \end{gathered} $$
(19)

Energies can be expressed in terms of q as \({{E}^{{({\text{c}},\tau )}}} = \) \(\sqrt {{{\Delta }^{2}}{\text{/}}4 + {{\Omega }^{2}}{{q}^{{({\text{c}},\tau )}}}} \) and \({{E}^{{({\text{v}},\tau )}}} = - \sqrt {{{\Delta }^{2}}{\text{/}}4 + {{\Omega }^{2}}{{q}^{{({\text{v}},\tau )}}}} \). Comparing Eq. (18) with Eq. (19) we see that there are relations \({{E}^{{({\text{v}},\tau )}}} = - {{E}^{{({\text{c}}, - \tau )}}}\) and \({{q}^{{({\text{v}},\tau )}}} = {{q}^{{({\text{c}}, - \tau )}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaplik, A.V., Magarill, L.I. & Vitlina, R.Z. Magnetic Edge States in Transition Metal Dichalcogenide Monolayers. Jetp Lett. 115, 620–625 (2022). https://doi.org/10.1134/S0021364022100563

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100563

Navigation