Skip to main content
Log in

Effect of Multiplicity of Collisions of Atomic Particles with a Solid on the Measurement of Electronic Stopping Powers

  • MISCELLANEOUS
  • Published:
JETP Letters Aims and scope Submit manuscript

It has been shown that the difference of the electron energy losses in collisions of atomic particles (ions or atoms) with a solid target measured by the backscattering technique from those measured by the method of beam transmission through a thin film is due to the effect of the multiplicity of collisions on the length of the trajectory of particles in the solid target. The length of the trajectory of an incident particle at low energies (0.7 keV) can exceed the thickness of the film by a factor of more than 2.5; consequently, the traditional definition of the stopping power as the energy loss per unit length of the projective path is inapplicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. N. Zinoviev, P. Yu. Babenko, D. S. Meluzova, and A. P. Shergin, JETP Lett. 108, 633 (2018).

    Article  ADS  Google Scholar 

  2. A. N. Zinoviev, P. Yu. Babenko, and K. Nordlund, Nucl. Instrum. Methods Phys. Res., Sect. B 508, 10 (2021).

    Google Scholar 

  3. SRIM, The Stopping and Range of Ions in Matter. http://srim.org.

  4. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, and A. N. Zinoviev, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 13, 335 (2019).

    Article  Google Scholar 

  5. P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys. Res., Sect. B 195, 64 (2002).

    Google Scholar 

  6. G. Schiwietz and P. L. Grande, Phys. Rev. A 84, 052703 (2011).

  7. NDS Data Base. https://www-nds.iaea.org.

  8. M. V. Moro, P. M. Wolf, B. Bruckner, F. Munnik, R. Heller, P. Bauer, and D. Primetzhofer, Nucl. Instrum. Methods Phys. Res., Sect. B 498, 1 (2021).

    Google Scholar 

  9. M. Mery, J. D. Uribe, M. Flores, N. R. Arista, V. A. Esaulov, and J. E. Valdes, Rad. Eff. Def. Solids 176, 73 (2021).

    Article  Google Scholar 

  10. M. Fama, G. H. Lantschner, J. C. Eckardt, N. R. Arista, J. E. Gayone, E. Sanchez, and F. Lovey, Nucl. Instrum. Methods Phys. Res., Sect. B 193, 91 (2002).

    Google Scholar 

  11. T. T. Tran, L. Jablonka, B. Bruckner, S. Rund, D. Roth, M. A. Sortica, P. Bauer, Z. Zhang, and D. Primetzhofer, Phys. Rev. A 100, 03275 (2019).

    Google Scholar 

  12. G. Konac, S. Kalbitzer, Ch. Klatt, D. Niemann, and R. Stoll, Nucl. Instrum. Methods Phys. Res., Sect. B 136–138, 159 (1998).

    Google Scholar 

  13. S. P. Möller, A. Csete, T. Ichioka, H. Knudsen, U. I. Uggerhoj, and H. H. Andersen, Phys. Rev. Lett. 88, 193201 (2002).

  14. H. H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S. P. Moller, and U. I. Uggerhoj, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 217 (2002).

    Google Scholar 

  15. B. Bruckner, D. Roth, D. Goebl, P. Bauer, and D.Primetzhofer, Nucl. Instrum. Methods Phys. Res., Sect. B 423, 82 (2018).

    Google Scholar 

  16. E. D. Cantero, G. H. Lantschner, J. C. Eckardt, and N. R. Arista, Phys. Rev. A 80, 032904 (2009).

  17. J. E. Valdes, J. C. Eckardt, G. H. Lantschner, and N. R. Arista, Phys. Rev. A 49, 1083 (1994).

    Article  ADS  Google Scholar 

  18. S. N. Markin, D. Primetzhofer, M. Spitz, and P. Bauer, Phys. Rev. B 80, 205105 (2009).

  19. G. Martinez-Tamayo, J. C. Eckardt, G. H. Lantscher, and N. R. Arista, Phys. Rev. A 51, 2285 (1995).

    Article  ADS  Google Scholar 

  20. D. Goebl, W. Roessler, D. Roth, and P. Bauer, Phys. Rev. A 90, 042706 (2014).

  21. J. E. Valdes, G. Martinez-Tamayo, G. H. Lantschner, J. C. Eckardt, and N. R. Arista, Nucl. Instrum. Methods Phys. Res., Sect. B 73, 313 (1993).

    Google Scholar 

  22. D. Goebl, D. Roth, and P. Bauer, Phys. Rev. A 87, 062903 (2013).

  23. J. E. Valdes, C. Agurto, F. Ortega, P. Vargas, R. Labbe, and N. R. Arista, Nucl. Instrum. Methods Phys. Res., Sect. B 164–165, 268 (2000).

    Google Scholar 

  24. R. Blume, W. Eckstein, and H. Verbeek, Nucl. Instrum. Methods Phys. Res. 168, 57 (1980).

    Article  ADS  Google Scholar 

  25. S. N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, and P. Bauer, Phys. Rev. B 78, 195122 (2008).

  26. H. Paul and A. Schinner, Phys. Scr. 69, C41 (2004).

    Article  Google Scholar 

  27. P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 78 (2017).

    Google Scholar 

  28. D. Goebl, K. Khalal-Kouache, D. Roth, E. Steinbauer, and P. Bauer, Phys. Rev. A 88, 032901 (2013).

  29. J. P. Biersack, E. Steinbauer, and P. Bauer, Nucl. Instrum. Methods Phys. Res., Sect. B 61, 77 (1991).

    Google Scholar 

  30. G. Moliere, Naturforsch. A 2, 133 (1947).

    Article  ADS  Google Scholar 

  31. A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 829 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zinoviev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinoviev, A.N., Babenko, P.Y. Effect of Multiplicity of Collisions of Atomic Particles with a Solid on the Measurement of Electronic Stopping Powers. Jetp Lett. 115, 560–563 (2022). https://doi.org/10.1134/S0021364022100526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100526

Navigation