Skip to main content
Log in

Contribution of Elementary Processes to the Electronic Stopping Power during Atomic Collisions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The electronic stopping losses for p–He and p–Ar systems are compared with independent measurements of cross sections for elementary processes. It is shown that quantitative agreement can be reached if the fact that significant energy losses are carried away by knocked-out electrons is taken into account. The dependence of the average energy of knocked-out electrons on the impact velocity for velocities that are smaller than 1.5 a.u. can be described within the framework of dynamic ionization theory. It is established that the equilibrium charge of beam particles depends on the ratio of the stripping and charge-exchange cross sections, and the use of frequently applied universal models for description of the equilibrium charge in the case under consideration is not justified. It is shown that the contribution of excitation processes for the studied cases does not exceed 7–12%, which differs from traditional concepts of equality between the contributions of ionization and excitation processes. The inclusion of multiple ionization processes, which increases the electronic stopping power by 6% in the case of p–He and by 23% in the case of p–Ar, turns out to be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. N. Zinoviev and K. Nordlund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 511 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

    Article  CAS  Google Scholar 

  2. DMol software, ver. 1997, DMol is a trademark of AccelRys, Inc.

  3. H. Bethe, Ann. Phys. (New York) 5, 325 (1930).

    CAS  Google Scholar 

  4. J. Lindhard, Mat.-Fys. Medd.—K. Dan. Vidensk. Selsk. 28, 1 (1954).

    Google Scholar 

  5. J. Lindhard and A. Winter, Mat.-Fys. Medd.—K. Dan. Vidensk. Selsk. 34, 1 (1964).

    Google Scholar 

  6. J. Lindhard and M. Scharff, Phys. Rev. 12, 128 (1961). https://doi.org/10.1103/PhysRev.124.128

    Article  Google Scholar 

  7. I. Abril, R. Garcia-Molina, C. D. Denton, et al., Phys. Rev. A: At., Mol., Opt. Phys. 58, 357 (1998). https://doi.org/10.1103/PhysRevA.58.357

    Article  CAS  Google Scholar 

  8. C. C. Montanari and J. E. Miraglia, Adv. Quantum Chem. 65, 165 (2013).

    Article  CAS  Google Scholar 

  9. C. C. Montanari, J. E. Miraglia, and N. R. Arista, Phys. Rev. A: At., Mol., Opt. Phys. 66, 042902 (2002). https://doi.org/10.1103/PhysRevA.66.042902

    Article  CAS  Google Scholar 

  10. T. L. Ferrell and R. H. Ritchie, Phys. Rev. B: Solid State 16, 115 (1977). https://doi.org/10.1103/PhysRevB.16.115

    Article  CAS  Google Scholar 

  11. P. M. Echenique, F. Flores, and R. H. Ritchie, Solid State Phys. 43, 229 (1990). https://doi.org/10.1016/S0081-1947(08)60325-2

    Article  CAS  Google Scholar 

  12. P. Sigmund and A. Schinner, Eur. Phys. J. D 12, 425 (2000). https://doi.org/10.1007/s100530070

    Article  CAS  Google Scholar 

  13. G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods. Phys. Res., Sect. B 153, 1 (1999). https://doi.org/10.1016/S0168-583X(98)00981-1

    Article  CAS  Google Scholar 

  14. G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods. Phys. Res., Sect. B 195, 55 (2002). https://doi.org/10.1016/S0168-583X(01)01164-8

    Article  Google Scholar 

  15. N. R. Arista, Nucl. Instrum. Methods Phys. Res., Sect. B 195, 91 (2002). https://doi.org/10.1016/S0168-583X(02)00687-0

    Article  CAS  Google Scholar 

  16. J. J. Bailey, A. S. Kadyrov, I. B. Abdurakhmanov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 92, 022707 (2015). https://doi.org/10.1103/PhysRevA.92.022707

    Article  CAS  Google Scholar 

  17. U. Fano, Annu. Rev. Nucl. Sci. 13, 1 (1963). https://doi.org/10.1146/annurev.ns.13.120163.000245

    Article  CAS  Google Scholar 

  18. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971). https://doi.org/10.1103/RevModPhys.43.297

    Article  CAS  Google Scholar 

  19. N. R. Arista and A. F. Lifschitz, Adv. Quantum Chem. 45, 47 (2004). https://doi.org/10.1016/S0065-3276(04)45003-5

    Article  CAS  Google Scholar 

  20. P. Sigmund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 391 (2017). https://doi.org/10.1016/j.nimb.2016.12.004

    Article  CAS  Google Scholar 

  21. C. C. Montanari and J. E. Miraglia, Phys. Rev. A 96, 012707 (2017). https://doi.org/10.1103/PhysRevA.96.012707

    Article  Google Scholar 

  22. O. B. Firsov, Zh. Eksp. Teor. Fiz. 9, 1076 (1959).

    Google Scholar 

  23. F. F. Komarov and M. A. Kumakhov, Phys. Status Solidi B 58, 389 (1973). https://doi.org/10.1002/pssb.2220580139

    Article  CAS  Google Scholar 

  24. S. Winecki, M. P. Stockli, and C. L. Cocke, Phys. Rev. A: At., Mol., Opt. Phys. 55, 4310 (1997). https://doi.org/10.1103/PhysRevA.55.4310

    Article  CAS  Google Scholar 

  25. P. M. Echenique, R. M. Nieminen, and R. H. Ritchie, Solid State Commun. 37, 779 (1981). https://doi.org/10.1016/0038-1098(81)91173-X

    Article  CAS  Google Scholar 

  26. E. Zaremba, A. Arnau, and P. M. Echenique, Nucl. Instrum. Methods. Phys. Res., Sect. B 96, 619 (1995). https://doi.org/10.1016/0168-583X(95)00250-2

    Article  CAS  Google Scholar 

  27. I. Nagy and B. Apagyi, Phys. Rev. A: At., Mol., Opt. Phys. 58, R1653 (1998). https://doi.org/10.1103/PhysRevA.58.R1653

    Article  CAS  Google Scholar 

  28. I. Nagy and A. Bergara, Nucl. Instrum. Methods. Phys. Res., Sect. B 115, 58 (1996). https://doi.org/10.1016/0168-583X(96)01562-5

    Article  CAS  Google Scholar 

  29. I. Nagy, Nucl. Instrum. Methods Phys. Res., Sect. B 94, 377 (1994). https://doi.org/10.1016/0168-583X(94)95411-9

    Article  CAS  Google Scholar 

  30. N. R. Arista, Nucl. Instrum. Methods Phys. Res., Sect. B 195, 91 (2002). https://doi.org/10.1016/S0168-583X(02)00687-0

    Article  CAS  Google Scholar 

  31. A. F. Lifschitz and N. R. Arista, Phys. Rev. A: At., Mol., Opt. Phys. 58, 2168 (1998). https://doi.org/10.1103/PhysRevA.58.2168

    Article  CAS  Google Scholar 

  32. J. M. Fernández-Varea and N. R. Arista, Radiat. Phys. Chem. 96, 88 (2014). https://doi.org/10.1016/j.radphyschem.2013.08.015

    Article  CAS  Google Scholar 

  33. H. B. Nersisyan, J. M. Fernández-Varea, and N. R. Arista, Nucl. Instrum. Methods. Phys. Res., Sect. B 354, 167 (2015). https://doi.org/10.1016/j.nimb.2014.11.089

    Article  CAS  Google Scholar 

  34. R. Cabrera-Trujillo, Y. Öhrn, E. Deumens, et al., Phys. Rev. A: At., Mol., Opt. Phys. 62, 052714 (2000). https://doi.org/10.1103/PhysRevA.62.052714

    Article  Google Scholar 

  35. J. J. Bailey, A. S. Kadyrov, I. B. Abdurakhmanov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 92, 022707 (2015). https://doi.org/10.1103/PhysRevA.92.022707

    Article  CAS  Google Scholar 

  36. J. J. Bailey, A. S. Kadyrov, I. B. Abdurakhmanov, et al., Phys. Rev. A: At., Mol., Opt. Phys. 92, 052711 (2015). https://doi.org/10.1103/PhysRevA.92.052711

    Article  CAS  Google Scholar 

  37. P. L. Grande, Phys. Rev. A 94, 042704 (2016). https://doi.org/10.1103/PhysRevA.94.042704

    Article  CAS  Google Scholar 

  38. M. A. L. Marques and E. K. U. Gross, Ann. Rev. Phys. Chem. 55, 427 (2004). https://doi.org/10.1146/annurev.physchem.55.091602.094449

    Article  CAS  Google Scholar 

  39. M. Quijada, A. G. Borisov, I. Nagy, et al., Phys. Rev. A: At., Mol., Opt. Phys. 75, 042902 (2007). https://doi.org/10.1103/PhysRevA.75.042902

    Article  CAS  Google Scholar 

  40. A. A. Shukri, F. Bruneval, and L. Reining, Phys. Rev. B: Condens. Matter Mater. Phys. 93, 035128 (2006). https://doi.org/10.1103/PhysRevB.93.035128

    Article  CAS  Google Scholar 

  41. M. A. Zeb, J. Kohanoff, D. Sánchez-Portal, et al., Phys. Rev. Lett. 108, 225504 (2012). https://doi.org/10.1103/PhysRevLett.108.225504

    Article  CAS  Google Scholar 

  42. R. Cabrera-Trujillo, J. R. Sabin, Y. Öhrn, et al., Phys. Rev. Lett. 84, 5300 (2000). https://doi.org/10.1103/PhysRevLett.84.5300

    Article  CAS  Google Scholar 

  43. P. D. Fainstein, G. H. Olivera, and R. D. Rivarola, Nucl. Instrum. Methods. Phys. Res., Sect. B 107, 19 (1996). https://doi.org/10.1016/0168-583X(95)00810-1

    Article  CAS  Google Scholar 

  44. P. L. Grande and G. Schiwietz, Phys. Rev. A: At., Mol., Opt. Phys. 47, 1119 (1993). https://doi.org/10.1103/PhysRevA.47.1119

    Article  CAS  Google Scholar 

  45. J. F. Janni, Atom. Data Nucl. Data Tables 27, 147 (1982). https://doi.org/10.1016/0092-640X(82)90004-3

    Article  CAS  Google Scholar 

  46. M. Kimura, Phys. Rev. A: At., Mol., Opt. Phys. 47, 2393 (1993). https://doi.org/10.1103/PhysRevA.47.2393

    Article  CAS  Google Scholar 

  47. J. H. McGuire and P. Richard, Phys. Rev. A: At., Mol., Opt. Phys. 8, 1374 (1973). https://doi.org/10.1103/PhysRevA.8.1374

    Article  CAS  Google Scholar 

  48. G. H. Olivera, A. E. Martinez, R. D. Rivarola, and P. D. Fainstein, Phys. Rev. A: At., Mol., Opt. Phys. 49, 603 (1994). https://doi.org/10.1103/PhysRevA.49.603

    Article  CAS  Google Scholar 

  49. T. Kaneko, Atom. Data Nucl. Data Tables 53, 271 (1993). https://doi.org/10.1006/adnd.1993.1007

    Article  CAS  Google Scholar 

  50. T. Kirchner, M. Horbatsch, and H. J. Ludde, Phys. Rev. A: At., Mol., Opt. Phys. 66, 052719 (2002). https://doi.org/10.1103/PhysRevA.66.052719

    Article  CAS  Google Scholar 

  51. E. J. McGuire, Phys. Rev. A: At., Mol., Opt. Phys. 28, 2096 (1983). https://doi.org/10.1103/PhysRevA.28.2096

    Article  CAS  Google Scholar 

  52. G. Schiwietz and P. L. Grande, Phys. Rev. A: At., Mol., Opt. Phys. 84, 052703 (2011). https://doi.org/10.1103/PhysRevA.84.052703

    Article  CAS  Google Scholar 

  53. H. Paul, Electronic Stopping Power of Matter for Ions. https://www-nds.iaea.org/stopping.

  54. C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958). https://doi.org/10.1103/PhysRev.109.355

    Article  CAS  Google Scholar 

  55. P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956). https://doi.org/10.1103/PhysRev.103.896

    Article  CAS  Google Scholar 

  56. J. F. Ziegler and J. P. Biersack, SRIM. http://www.srim.org.

  57. M. E. Rudd, L. H. Toburen, and N. Stolterfoht, Atom. Data Nucl. Data Tables 18, 413 (1976). https://doi.org/10.1016/0092-640X(76)90012-7

    Article  CAS  Google Scholar 

  58. M. E. Rudd, L. H. Toburen, and N. Stolterfoht, Atom. Data Nucl. Data Tables 23, 405 (1979). https://doi.org/10.1016/0092-640X(79)90026-3

    Article  CAS  Google Scholar 

  59. M. E. Rudd, J. S. Risley, J. Fryar, et al., Phys. Rev. A: At., Mol., Opt. Phys. 21, 506 (1980). https://doi.org/10.1103/PhysRevA.21.506

    Article  CAS  Google Scholar 

  60. M. E. Rudd, Y-K. Kim, D. H. Madison, et al., Rev. Mod. Phys. 64, 441 (1992). https://doi.org/10.1103/RevModPhys.64.441

    Article  CAS  Google Scholar 

  61. S. Yu. Ovchinnikov, G. N. Ogurtsov, J. H. Macek, et al., Phys. Rep. 389, 119 (2004). https://doi.org/10.1016/j.physrep.2003.09.005

    Article  CAS  Google Scholar 

  62. P. H. Woerlee, Yu. S. Gordeev, H. de Waard, et al., J. Phys. B 14, 527 (1981). https://doi.org/10.1088/0022-3700/14/3/029

    Article  CAS  Google Scholar 

  63. Yu. S. Gordeev and G. N. Ogurtsov, Zh. Eksp. Teor. Fiz. 33, 1105 (1972).

    Google Scholar 

  64. M. B. Shah and H. B. Gilbody, J. Phys. B 18, 899 (1985). https://doi.org/10.1088/0022‑3700/18/5/010

    Article  CAS  Google Scholar 

  65. M. E. Rudd, R. D. DuBois, L. H. Toburen, et al., Phys. Rev. A: At., Mol., Opt. Phys. 28, 3244 (1983). https://doi.org/10.1103/PhysRevA.28.3244

    Article  CAS  Google Scholar 

  66. S. V. Avakyan, R. N. Il’in, V. M. Lavrov, et al., Collision Processes and Excitation of UV Emission from Planetary Atmospheric Gases (Gordon and Breach, New York, 1998).

    Google Scholar 

  67. L. Sarkadi, P. Herczku, S. T. S. Kovacs, et al., Phys. Rev. A: At., Mol., Opt. Phys. 87, 062705 (2013). https://doi.org/10.1103/PhysRevA.87.062705

    Article  CAS  Google Scholar 

  68. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, et al., Tech. Phys. 39, 159 (1969).

    CAS  Google Scholar 

  69. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, et al., Tech. Phys. 37, 717 (1967).

    CAS  Google Scholar 

  70. E. S. Solov’ev, R. N. Il’in, V. A. Oparin, et al., Zh. Eksp. Teor. Fiz. 15, 459 (1962).

    Google Scholar 

  71. C. C. Montanari and J. E. Miraglia, J. Phys. B 47, 105203 (2014). https://doi.org/10.1088/0953-4075/47/10/105203

    Article  CAS  Google Scholar 

  72. C. F. Barnett, Collisions of H, H2, He and Li atoms and ions with atoms and molecules, ORNL-6086 (1990), Vol. 1.

  73. R. E. H. Clark and J. Abdallah, in Atomic and Plasma–Material Interaction Data for Fusion (IAEA, Vienna, 2003), Vol. 11, p. 1.

    Google Scholar 

  74. R. J. McNeal, D. C. Clark, and R. A. Klingberg, Phys. Rev. A: At., Mol., Opt. Phys. 2, 131 (1970). https://doi.org/10.1103/PhysRevA.2.131

    Article  Google Scholar 

  75. L. Gulyás and P. D. Fainstein, in Atomic and Plasma–Material Interaction Data for Fusion (IAEA, Vienna, 2002), Vol. 10, p. 103.

    Google Scholar 

  76. J. B. H. Stedeford and J. B. Hasted, Proc. R. Soc. London, Ser. A 227, 466 (1955). https://doi.org/10.1098/rspa.1955.0024

    Article  CAS  Google Scholar 

  77. F. J. De Heer, J. Schutten, and H. Moustafa, Physica 32, 1766 (1966).

    Article  CAS  Google Scholar 

  78. J. F. Williams, Phys. Rev. 157, 97 (1967). https://doi.org/10.1103/PhysRev.157.97

    Article  CAS  Google Scholar 

  79. J. F. Williams, Phys. Rev. 153, 116 (1967). https://doi.org/10.1103/PhysRev.153.116

    Article  CAS  Google Scholar 

  80. D. J. Volz and M. E. Rudd, Phys. Rev. A: At., Mol., Opt. Phys. 2, 1395 (1970). https://doi.org/10.1103/PhysRevA.2.1395

    Article  Google Scholar 

  81. H. B. Gilbody and J. B. Hasted, Proc. R. Soc. London, Ser. A 240, 382 (1957). https://doi.org/10.1098/rspa.1957.0093

    Article  CAS  Google Scholar 

  82. E. G. Cavalcanti, G. M. Sigaud, E. C. Montenegro, et al., J. Phys. B 36, 3087 (2003). https://doi.org/10.1088/0953-4075/36/14/311

    Article  CAS  Google Scholar 

  83. W. S. Melo, A. C. F. Santos, M. M. Sant’Anna, et al., J. Phys. B 35, L187 (2002). https://doi.org/10.1088/0953-4075/35/9/102

    Article  CAS  Google Scholar 

  84. I. S. Dmitriev, Ya. A. Teplova, and Yu. A. Fainberg, Zh. Eksp. Teor. Fiz. 80, 28 (1995).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Alexei Alexeevich Basalaev (Ioffe Physical–Technical Institute) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Babenko.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinoviev, A.N., Babenko, P.Y. Contribution of Elementary Processes to the Electronic Stopping Power during Atomic Collisions. J. Surf. Investig. 15, 623–636 (2021). https://doi.org/10.1134/S1027451021030368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030368

Keywords:

Navigation