Skip to main content
Log in

Collapse and Revival of the Electron Spin Echo of Impurity Yb3+ Ions on Hidden Frequency Combs of Hyperfine Interactions in a Y2SiO5 Single Crystal

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The collapse and revival of Hahn electron spin echo signals excited on electron–nuclear spin levels of an impurity 173Yb3+ ion in yttrium orthosilicate Y2SiO5 have been detected. A model of the phenomenon has been proposed on the basis of the combination of the conventional mechanism of the formation of two-pulse Hahn echo and the mechanism of the formation of echo signals on spin frequency combs that are hidden in the inhomogeneous width of resonance lines and are due to the hyperfine interaction of the electron spin of the Yb3+ ion with surrounding nuclear spins of 89Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, Nature (London, U.K.) 456, 773 (2008).

    Article  ADS  Google Scholar 

  2. C. W. Thiel, T. Böttger, and R. L. Cone, J. Lumin. 131, 353 (2011).

    Article  Google Scholar 

  3. M. Bonarota, J.-L. le Gouët, and T. Chanelière, New J. Phys. 13, 013013 (2011).

  4. C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, Laser Phys. 24, 106002 (2014).

  5. M. Rancic, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nat. Phys. 14, 50 (2018).

    Article  Google Scholar 

  6. Y.-H. Chen, X. Frnandez-Gonzalvo, S. P. Horvath, J. V. Rakonjac, and J. J. Longdell, Phys. Rev. B 97, 024419 (2018).

  7. G. Wolfowicz, H. Maier-Flaig, R. Marino, A. Ferrier, H. Vezin, J. J. L. Morton, and Ph. Goldner, Phys. Rev. Lett. 114, 170503 (2015).

  8. G. Dold, C. W. Zollitsch, J. O’Sullivan, S. Welinski, A. Ferrier, Ph. Goldner, S. E. de Graaf, T. Lindstrom, and J. J. L. Morton, Phys. Rev. Appl. 11, 054082 (2019).

  9. R. M. Eremina, V. F. Tarasov, K. B. Konov, T. P. Gavrilova, A. V. Shestakov, V. A. Shustov, S. A. Kutovoi, and Yu. D. Zavartsev, Appl. Magn. Reson. 49, 53 (2018).

    Article  Google Scholar 

  10. M. Gündogan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, Phys. Rev. Lett. 114, 230501 (2015).

  11. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, Ph. Goldner, and M. Afzelius, Phys. Rev. Lett. 114, 230502 (2015).

  12. A. A. Sukhanov, V. F. Tarasov, Yu. D. Zavartsev, A. I. Zagumennyi, and S. A. Kutovoi, JETP Lett. 108, 210 (2018).

    Article  ADS  Google Scholar 

  13. A. Louchet, Y. Le Du, F. Bretenaker, T. Chaneliere, F. Goldfarb, I. Lorgere, J.-L. le Gouet, O. Guillot-Noel, and Ph. Goldner, Phys. Rev. B 77, 195110 (2008).

  14. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minar, H. de Riedmatten, N. Gisin, and S. Kroll, Phys. Rev. Lett. 104, 040503 (2010).

  15. M. Lovrić, D. Suter, A. Ferrier, and Ph. Goldner, Phys. Rev. Lett. 111, 020503 (2013).

  16. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature (London, U.K.) 517, 177 (2015).

    Article  ADS  Google Scholar 

  17. S. Welinski, A. Ferrier, M. Afzelius, and Ph. Goldner, Phys. Rev. B 94, 155116 (2016).

  18. A. Tiranov, A. Ortu, S. Welinski, A. Ferrier, Ph. Goldner, N. Gisin, and M. Afzelius, Phys. Rev. B 98, 195110 (2018).

  19. H.-J. Lim, S. Welinski, A. Ferrier, Ph. Goldner, and J. J. L. Morton, Phys. Rev. B 97, 064409 (2018).

  20. M. Businger, A. Tiranov, K. T. Kaczmarek, S. Welinski, Z. Zhang, A. Ferrier, Ph. Goldner, and M. Afzelius, Phys. Rev. Lett. 124, 053606 (2020).

  21. A. Ortu, A. Tiranov, S. Welinski, F. Fröwis, N. Gisin, A. Ferrier, Ph. Goldner, and M. Afzelius, Nat. Mater. 17, 671 (2018).

    Article  ADS  Google Scholar 

  22. B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, Sov. Phys. Dokl. 13, 1313 (1968).

    Google Scholar 

  23. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, Phys. Rev. A 23, 236 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett. 58, 353 (1987).

    Article  ADS  Google Scholar 

  26. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).

    Article  ADS  Google Scholar 

  27. D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.‑Y. Lan, T. A. B. Kennedy, and A. Kuzmich, Phys. Rev. Lett. 96, 033601 (2006).

  28. B. Car, J.-L. le Gouët, and T. Chaneliere, Phys. Rev. B 102, 115119 (2020).

  29. W. B. Mims, Phys. Rev. B 5, 2409 (1972).

    Article  ADS  Google Scholar 

  30. K. M. Salikhov, A. G. Semenov, and Yu. D. Tsvetkov, Electron Spin Echo and Its Application (Nauka, Novosibirsk, 1976), Chap. 5 [in Russian].

    Google Scholar 

  31. A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, New York, 2001), Chap. 10.

    Google Scholar 

  32. B. Ya. Dubetskii and V. P. Chebotaev, JETP Lett. 41, 328 (1985).

    ADS  Google Scholar 

  33. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys. Rev. A 79, 052329 (2009).

  34. R. M. Arkhipov, JETP Lett. 113, 611 (2021).

    Article  ADS  Google Scholar 

  35. T. Fortier and F. Baumann, Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  36. K. I. Gerasimov, S. A. Moiseev, and R. B. Zaripov, A-ppl. Magn. Reson. 48, 795 (2017).

    Article  Google Scholar 

  37. K. I. Gerasimov, S. A. Moiseev, V. I. Morosov, and R. B. Zaripov, Phys. Rev. A 90, 042306 (2014).

  38. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), Chap. 10.

    Google Scholar 

  39. R. F. Likerov, V. F. Tarasov, A. A. Sukhanov, A. V. Shestakov, R. M. Eremina, Yu. D. Zavartsev, and S. A. Kutovoi, Magn. Reson. Solids El. J. 22, 20201 (2020).

    Google Scholar 

  40. J. A. Weil and J. H. Anderson, J. Chem. Phys. 35, 1410 (1961).

    Article  ADS  Google Scholar 

  41. J. A. Weil and J. R. Bolton, Paramagnetic Resonance. Elementary Theory and Practical Applications, 2nd ed. (Wiley, Hoboken, NJ, 2007), Chap. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovarov, N.K., Sukhanov, A.A., Tarasov, V.F. et al. Collapse and Revival of the Electron Spin Echo of Impurity Yb3+ Ions on Hidden Frequency Combs of Hyperfine Interactions in a Y2SiO5 Single Crystal. Jetp Lett. 115, 362–367 (2022). https://doi.org/10.1134/S0021364022100241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100241

Navigation