Skip to main content
Log in

Study of the Interaction of Potassium Atoms with the Sapphire Surface with the Use of an Ultrathin Spectroscopic Cell

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The effect of the dielectric surface on the 39K D1 line (Fg = 1, 2 → Fe = 1, 2 transitions) at nanometer distances has been experimentally studied for the first time. A nanocell that is filled with atomic potassium and has a wedge gap has been used to study the effect of atoms at distances of 50–800 nm from the technical sapphire window surface. At distances L < 100 nm from the sapphire surface, the van der Waals interaction strongly broadens atomic transitions and their frequencies are redshifted. The second derivative method applied to the absorption spectra of the nanocell has allowed the first measurement of the van der Waals interaction coefficient C3 = (1.2 ± 0.3) kHz μm3 for the 39K D1 line. It has been shown that the dipole–dipole interaction between 39K atoms results in the additional redshift at an increase in the density of atoms for the nanocell thickness L < 70 nm. The results obtained are important for the development of submicron devices containing free atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Kitching, Appl. Phys. Lett. 5, 031302 (2018).

  2. J. Keaveney, Collective Atom Light Interactions in Dense Atomic Vapours (Springer, Cham, 2014).

    Book  Google Scholar 

  3. M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, J. Phys. II (Fr.) 2, 631 (1992).

    Google Scholar 

  4. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, Phys. Rev. Lett. 83, 5467 (1999).

    Article  ADS  Google Scholar 

  5. D. Bloch and M. Ducloy, Adv. At. Mol. Opt. Phys. 50, 91 (2005).

    Article  ADS  Google Scholar 

  6. A. Laliotis, T. Passerat de Silans, I. Maurin, M. Ducloy, and D. Bloch, Nat. Commun. 5, 4364 (2014).

    Article  ADS  Google Scholar 

  7. T. Peyrot, N. Šibalić, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, I. G. Hughes, and C. S. Adams, Phys. Rev. A 100, 022503 (2019).

  8. A. V. Ermolaev and T. A. Vartanyan, Phys. Rev. A 105, 013518 (2022).

  9. J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett. 108, 173601 (2012).

  10. A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

    Article  ADS  Google Scholar 

  11. M. Fichet, G. Dutier, A. Yarovitsky, P. Todorov, I. Hamdi, I. Maurin, S. Saltiel, D. Sarkisyan, M. P. Gorza, D. Bloch, and M. Ducloy, Europhys. Lett. 77, 54001 (2007).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, and D. Sarkisyan, Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

  13. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett. 112, 253201 (2014).

  14. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, Phys. Rev. A 92, 052706 (2015).

  15. A. Sargsyan, E. Pashayan-Leroy, C. Leroy, Yu. Malakyan, and D. Sarkisyan, JETP Lett. 102, 487 (2015).

    Article  ADS  Google Scholar 

  16. K. Pahwa, L. Mudarikwa, and J. Goldwin, Opt. Express 20, 17456 (2012).

    Article  ADS  Google Scholar 

  17. A. Lampis, R. Culver, B. Megyeri, and J. Goldwin, Opt. Express 24, 15494 (2016).

    Article  ADS  Google Scholar 

  18. T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett. 120, 243401 (2018).

  19. V. V. Vassiliev, A. S. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).

  20. D. Bloch, M. Ducloy, N. Senkov, V. Velichansky, and V. Yudin, Laser Phys. 6, 670 (1996).

    Google Scholar 

  21. A. Sargsyan, E. Klinger, A. Amiryan, A. Tonoyan, and D. Sarkisyan, Phys. Lett. A 390, 127114 (2021).

  22. A. Sargsyan, A. Tonoyan, and D. Sarkisyan, JETP Lett. 113, 605 (2021).

    Article  ADS  Google Scholar 

  23. A. Sargsyan, E. Klinger, C. Leroy, I. G. Hughes, D. Sarkisyan, and C. S. Adams, J. Phys. B: At. Mol. Opt. Phys. 52, 195001 (2019).

  24. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, J. Opt. Soc. Am. B 20, 793 (2003).

    Article  ADS  Google Scholar 

  25. T. Peyrot, Ch. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).

    Article  ADS  Google Scholar 

  26. T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker, D. Pizzey, I. G. Hughes, V. Sandoghdar, and C. S. Adams, Phys. Rev. Appl. 14, 034054 (2020).

  27. T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, J. Phys. B: At. Mol. Opt. Phys. 41, 185004 (2008).

Download references

AKNOWLEDGMENTS

We are grateful to Ara Tonoyan for technical assistance.

Funding

This work was supported by the State Committee for Science, Ministry of Education and Science of the Republic of Armenia (project no. N21T-1C005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sargsyan or D. Sarkisyan.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Pichler, G. & Sarkisyan, D. Study of the Interaction of Potassium Atoms with the Sapphire Surface with the Use of an Ultrathin Spectroscopic Cell. Jetp Lett. 115, 312–317 (2022). https://doi.org/10.1134/S0021364022100198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100198

Navigation