Skip to main content
Log in

Forming-Free Memristors Based on Hafnium Oxide Processed in Electron Cyclotron Resonance Hydrogen Plasma

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

It is shown that the treatment of stoichiometric HfO2, which is synthesized by atomic layer deposition, in electron cyclotron resonance hydrogen plasma leads to a significant depletion of the film in oxygen and the formation of nonstoichiometric HfOx (\(x < 2\)). The longer the treatment time, the higher the degree of oxygen depletion. The charge transfer in the films under study occurs by phonon-assisted tunneling between oxygen vacancies serving as traps. It has been found that the \({{p}^{{ + + }}}\)-Si/HfOx/Ni structures, where the oxide layer is treated in the electron cyclotron resonance hydrogen plasma, have memristor properties: they are reversibly switched between high and low resistance states. The fabricated memristor structures are forming-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. G. Zhu, J. Zhou, Z. L. Guo, and Z. M. Sun, J. Materiomics 1, 285 (2015).

  2. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, Nature (London, U.K.) 464, 873 (2010).

    Article  ADS  Google Scholar 

  3. Y. Y. Chen, IEEE Trans. Electron Dev. 67, 1420 (2020).

    Article  ADS  Google Scholar 

  4. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).

  5. Z. R. Wang, H. Y. Yu, X. A. Tran, Z. Fang, J. H. Wang, and H. B. Su, Phys. Rev. B 85, 195322 (2012).

  6. Y. S. Chen, H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, F. Chen, M. J. Tsai, and C. Lien, IEEE Electron. Dev. Lett. 31, 1473 (2010).

    Article  ADS  Google Scholar 

  7. V. S. Aliev, A. K. Gerasimova, V. N. Kruchinin, V. A. Gritsenko, I. P. Prosvirin, and I. A. Badmaeva, Mater. Res. Express 3, 085008 (2016).

  8. V. A. Voronkovskii, T. V. Perevalov, R. M. H. Iskhakzay, V. S. Aliev, V. A. Gritsenko, and I. P. Prosvirin, J. Non-Cryst. Solids 546, 120256 (2020).

  9. T. V. Perevalov, R. M. Kh. Iskhakzai, V. Sh. Aliev, V. A. Gritsenko, and I. P. Prosvirin, J. Exp. Theor. Phys. 131, 940 (2020).

    Article  ADS  Google Scholar 

  10. V. Sh. Aliev, V. N. Votentsev, A. K. Gutakovskii, S. M. Maroshina, and D. V. Shcheglov, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 1, 454 (2007).

    Article  Google Scholar 

  11. Y. Y. Chen, L. Goux, J. Swerts, M. Toeller, C. Adelmann, J. Kittl, M. Jurczak, G. Groeseneken, and D. J. Wouters, IEEE Electron. Dev. Lett. 33, 483 (2012).

    Article  ADS  Google Scholar 

  12. J. H. Scofield, J. Electron Spectrosc. Rel. Phenom. 8, 129 (1976).

    Article  Google Scholar 

  13. S. W. Do, Y. H. Lee, and J. S. Lee, J. Korean Phys. Soc. 50, 666 (2007).

    Article  Google Scholar 

  14. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. A. Gritsenko, D. R. Islamov, T. V. Perevalov, V. S. Aliev, A. P. Yelisseyev, E. E. Lomonova, V. A. Pustovarov, and A. Chin, J. Phys. Chem. C 120, 19980 (2016).

    Article  Google Scholar 

  16. T. V. Perevalov, V. S. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, Appl. Phys. Lett. 104, 071904 (2014).

  17. K. A. Nasyrov and V. A. Gritsenko, J. Exp. Theor. Phys. 112, 1026 (2011).

    Article  ADS  Google Scholar 

  18. T. V. Perevalov, A. A. Gismatulin, D. S. Seregin, Y. J. Wang, H. Y. Xu, V. N. Kruchinin, E. V. Spesivcev, V. A. Gritsenko, K. A. Nasyrov, I. P. Prosvirin, J. Zhang, K. A. Vorotilov, and M. R. Baklanov, J. Appl. Phys. 127, 195105 (2020).

  19. R. L. Puurunen, A. Delabie, S. van Elshocht, et al., Appl. Phys. Lett. 86, 073116 (2005).

Download references

ACKNOWLEDGMENTS

We acknowledge the Center of Collective Usage VTAN of the Novosibirsk State University for access to the measurement equipment.

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00286) (synthesis of samples and XPS analysis) and by the Ministry of Science and Higher Education of the Russian Federation (state contract no. 0242-2021-0003 with the Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, measurements and analysis of current–voltage characteristics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, T.V., Iskhakzai, R.M., Prosvirin, I.P. et al. Forming-Free Memristors Based on Hafnium Oxide Processed in Electron Cyclotron Resonance Hydrogen Plasma. Jetp Lett. 115, 79–83 (2022). https://doi.org/10.1134/S0021364022020084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022020084

Navigation