Skip to main content
Log in

Relativistic Self-Trapping of Extreme Laser Light in an Inhomogeneous Plasma

  • PLASMA, HYDRO- AND GAS DYNAMICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The possibility of implementing the relativistic self-trapping of an ultraintense laser pulse in a plasma with an inhomogeneous density profile is proved using the three-dimensional kinetic particle-in-cell simulation. The necessary focusing conditions of laser light are determined depending on the gradient length of the plasma density. The comparison of the efficiency of the laser-induced acceleration of electrons with the case of a homogeneous plasma indicates that the appropriate choice of the position of the focus of laser light and the size of the focusing spot on the density profile ensures the relativistic self-trapping of the laser pulse and its use in innovative applications with the same efficiency as in the case of a homogeneous target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  2. E. Esarey, P. Sprangle, J. Krall, and A. Ting, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

  3. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).

    Article  ADS  Google Scholar 

  4. M. G. Lobok, A. V. Brantov, D. A. Gozhev, and V. Yu. Bychenkov, Plasma Phys. Control. Fusion 60, 084010 (2018).

  5. V. Yu. Bychenkov, M. G. Lobok, V. F. Kovalev, and A. V. Brantov, Plasma Phys. Control. Fusion 61, 124004 (2019).

  6. V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 7, 564 (1964).

    Google Scholar 

  7. R. Y. Chiao, E. Garmire, and C. Townes, Phys. Rev. Lett. 13, 479 (1964).

    Article  ADS  Google Scholar 

  8. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. JETP 23, 1025 (1966).

    ADS  Google Scholar 

  9. E. D. Zaloznaya, A. E. Dormidonov, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, JETP Lett. 113, 787 (2021).

    Article  Google Scholar 

  10. M.-W. Lin, Y.-M. Chen, C.-H. Pai, C.-C. Kuo, K.‑H. Lee, J. Wang, S.-Y. Chen, and J.-Y. Lin, Phys. Plasmas 13, 110701 (2006).

  11. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Phys. Plasmas 17, 083107 (2010).

  12. B. Guo, Z. Cheng, S. Liu, X. N. Ning, J. Zhang, C. H. Pai, J. F. Hua, H. H. Chu, J. Wang, and W. Lu, Plasma Phys. Control. Fusion 61, 035003 (2019).

  13. S. Gordienko and A. Pukhov, Phys. Plasmas 12, 043109 (2005).

  14. W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, Phys. Rev. Accel. Beams 10, 061301 (2007).

  15. P. E. Masson-Laborde, M. Z. Mo, A. Ali, S. Fourmaux, P. Lassonde, J. C. Kieffer, W. Rozmus, D. Teychenné, and R. Fedosejevs, Phys. Plasmas 21, 123113 (2004).

  16. V. F. Kovalev and V. Yu. Bychenkov, Phys. Rev. E 99, 043201 (2019).

  17. M. G. Lobok, A. V. Brantov, and V. Yu. Bychenkov, Phys. Plasmas 26, 123107 (2019).

  18. C. D. Decker, W. B. Mori, K. C. Tzeng, and T. Katsouleas, Phys. Plasmas 3, 2047 (1996).

    Article  ADS  Google Scholar 

  19. V. F. Kovalev and V. Yu. Bychenkov, Radiophys. Quantum Electron. 63, 742 (2021).

    Article  ADS  Google Scholar 

  20. M. G. Lobok, A. V. Brantov, and V. Yu. Bychenkov, Phys. Plasmas 27, 123103 (2020).

  21. L. Labate Luca, D. Palla, D. Panetta, F. Avella, F. Baffigi, F. Brandi, F. Di Martino, L. Fulgentini, A. Giulietti, P. Köster, D. Terzani, P. Tomassini, C. Traino, and L. A. Gizzi, Sci. Rep. 10, 17307 (2020).

    Article  ADS  Google Scholar 

  22. Zh. Ma, H. Lan, W. Liu, S. Wu, Y. Xu, Zh. Zhu, and W. Luo, Matter Radiat. Extremes 4, 064401 (2019).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-12-01283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bychenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychenkov, V.Y., Lobok, M.G. Relativistic Self-Trapping of Extreme Laser Light in an Inhomogeneous Plasma. Jetp Lett. 114, 579–584 (2021). https://doi.org/10.1134/S0021364021220069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021220069

Navigation