Skip to main content
Log in

Electronic States of Cobalt Ions in EuBaCo2O5 + δ Layered Cobaltites

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The oxygen K-edge X-ray absorption spectra in EuBaCo2O5.52 ± 0.02 and EuBaCo2O5.24 ± 0.02 cobaltites are measured at temperatures of 300 and 440 K, which are below and above the metal–insulator transition temperature, respectively. According to these spectra, the substitution of Co2+ ions for some Co3+ ions with a decrease in the oxygen content in the chemical formula of a cobaltite and, hence, an increase in the relative fraction of CoO5 pyramids with respect to the number of CoO6 octahedra leads to an increase in the band gap by about 0.3 eV. The band structure of EuBaCo2O5.5 is calculated using the method of linearized muffin-tin orbitals in the local density approximation taking into account the local Coulomb interaction. It is found that the low-spin state of Co3+ ions occurs in CoO6 octahedra in EuBaCo2O5.5, whereas the high-spin state of Co3+ ions is typical of cobalt ions in pyramids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  2. V. P. Plakhty, Y. P. Chernenkov, S. N. Barilo, A. Podlesnyak, E. Pomjakushina, E. V. Moskvin, and S. V. Gavrilov, Phys. Rev. B 71, 214407 (2005).

  3. S. Roy, I. S. Dubenko, M. Khan, E. M. Condon, J. Craig, N. Ali, W. Liu, and B. S. Mitchell, Phys. Rev. B 71, 024419 (2005).

  4. E.-L. Rautama and M. Karppinen, J. Solid State Chem. 183, 1102 (2010).

    Article  ADS  Google Scholar 

  5. S. V. Naumov, V. I. Voronin, I. F. Berger, M. S. Udintseva, V. V. Mesilov, B. A. Gizhevskii, S. V. Telegin, and V. R. Galakhov, J. Alloys Compd. 817, 152775 (2020).

  6. V. R. Galakhov, Phys. Met. Metallogr. 122, 83 (2021).

  7. Z. Hu, H. Wu, T. C. Koethe, S. N. Barilo, et al., New J. Phys. 14, 123025 (2012).

  8. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Appl. Phys. Lett. 71, 1421 (1997).

    Article  ADS  Google Scholar 

  9. S. M. Loureiro, C. Felser, Q. Huang, and R. J. Cava, Chem. Mater. 12, 3181 (2000).

    Article  Google Scholar 

  10. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  11. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  12. A. A. Makhnev, L. V. Nomerovannaya, S. V. Strel’tsov, V. I. Anisimov, S. N. Barilo, and S. V. Shiryaev, Phys. Solid State 51, 525 (2009).

    Article  ADS  Google Scholar 

  13. Z. Shi, T. Xia, F. Meng, J. Wang, J. Lian, H. Zhao, J.‑M. Bassat, J.-C. Grenier, and J. Meng, Fuel Cells 14, 979 (2014).

    Article  Google Scholar 

  14. N. McGlothlin, D. Ho, and R. J. Cava, Mater. Res. Bull. 35, 1035 (2000).

    Article  Google Scholar 

  15. Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H. J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004).

  16. C. F. Chang, Z. Hu, H. Wu, T. Burnus, N. Hollmann, M. Benomar, T. Lorenz, A. Tanaka, H.-J. Lin, H. H. Hsieh, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 102, 116401 (2009).

  17. P. Miao, X. Lin, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Ueno, N. Inami, K. Ono, Y. Wang, and T. Kamiyama, Phys. Rev. B 95, 125123 (2017).

  18. E. Marelli, J. Gazquez, E. Poghosyan, E. Müller, D. J. Gawryluk, E. Pomjakushina, D. Sheptyakov, C. Piamonteze, D. Aegerter, T. J. Schmidt, M. Medarde, and E. Fabbri, Angew. Chem. Int. Ed. 60, 14609 (2021).

    Article  Google Scholar 

  19. A. A. Makhnev, L. V. Nomerovannaya, A. O. Tashlykov, S. N. Barilo, and S. V. Shiryaev, Phys. Solid State 49, 894 (2007).

    Article  ADS  Google Scholar 

  20. Y. Ren, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, J. D. Jorgensen, S. Short, H. Kim, T. Proffen, S. Chang, and R. J. McQueeney, Phys. Rev. B 84, 214409 (2011).

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. АААА-А18-118020190098-5, project Electron, and state assignment no. AAAA-A18-118020290104-2, project Spin) and partially by the Russian Foundation for Basic Research (project no. 20-02-00461). The measurements of X-ray spectra were partially supported by the bilateral Russian–German Laboratory at BESSY. M.S. Udintseva acknowledges the support of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (project no. M 8-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Udintseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udintseva, M.S., Efremov, A.V., Smirnov, D. et al. Electronic States of Cobalt Ions in EuBaCo2O5 + δ Layered Cobaltites. Jetp Lett. 114, 475–478 (2021). https://doi.org/10.1134/S002136402120011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402120011X

Navigation