Skip to main content
Log in

Effect of the Oxygen Content on the Metal‒Insulator Transition and on the Spin State of Co3+ Ions in the Layered NdBaCo2O5 + δ Cobaltite (0.37 ≤ δ ≤ 0.65)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The effect of the oxygen content δ in layered NdBaCo2O5 + δ cobaltite, where 0.37 ≤ δ ≤ 0.65, on the metal‒insulator transition, as well as on the magnetic and spin states of Co3+, is studied for the first time. An increase in δ reduces the metal‒insulator transition temperature TMI, the antiferromagnetic ordering temperature TN, and the Curie temperature TC by about 100–150 K. For all values of δ, the metal‒insulator transition occurs when the spin state of Co3+ ions changes from the HS/LS state in the metallic phase to the IS/LS state in the semiconducting phase, whereas with an increase in δ, the spin state of Co3+ ions changes from the IS/LS to HS/LS state. At δ ~ 0.65, a heavily doped semiconductor–bad metal transition occurs without any change in the spin state of Co3+ ions. The ferromagnetic behavior of NdBaCo2O5 + δ in the antiferromagnetic phase below TN is interpreted in terms of the metamagnetic model as the effect of the size of the rare earth Nd3+ ion on the antiferromagnetic state in layered cobaltites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  2. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Appl. Phys. Lett. 71, 1421 (1997).

    Article  ADS  Google Scholar 

  3. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).

  4. C. Frontera, J. L. García-Muñoz, C. Ritter, D. Martín y Marero, and A. Caneiro, Phys. Rev. B 65, 180405(R) (2002).

  5. Y. Moritomo, T. Akimoto, M. Takeo, A. Machida, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, and A. Nakamura, Phys. Rev. B 61, 13325(R) (2000).

  6. Z. X. Zhou and P. Schlottmann, Phys. Rev. B 71, 174401 (2005).

  7. M. Baran, V. I. Gatalskaya, R. Szymczak, S. V. Shiryaev, S. N. Barilo, K. Piotrowski, G. L. Bychkov, and H. Szymczak, J. Phys.: Condens. Matter 15, 8853 (2003).

    ADS  Google Scholar 

  8. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  9. N. I. Solin, S. V. Naumov, and V. A. Kazantsev, J. Exp. Theor. Phys. 130, 690 (2020).

    Article  ADS  Google Scholar 

  10. C. Frontera, J. L. García-Muñoz, A. E. Carillo, M. A. G. Aranda, I. Margiolaki, and A. Caneiro, Phys. Rev. B 74, 054406 (2006).

  11. R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).

    Article  ADS  Google Scholar 

  12. F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, Phys. Rev. B 66, 184421 (2002).

  13. A. Jarry, H. Luetkens, Y. G. Pashkevich, P. Lemmens, H.-H. Klaus, M. Stingaciu, E. Pomjakushina, and K. Conder, Phys. B (Amsterdam, Neth.) 404, 765 (2009).

  14. N. I. Solin and S. V. Naumov, JETP Lett. 114, 150 (2021).

    Article  ADS  Google Scholar 

  15. S. Ganorkar, K. R. Priolkar, P. R. Sarode, and A. Banerjee, J. Appl. Phys. 110, 053923 (2011).

  16. L. Landau, Phys. Zs. Sowjet. 4, 675 (1933).

    Google Scholar 

  17. D. D. Khalyavin, O. Prokhnenko, N. Stüßer, V. Sikolenko, V. Efimov, A. N. Salak, A. A. Yaremchenko, and V. V. Kharton, Phys. Rev. B 77, 174417 (2008).

  18. D. Chernyshov, V. Dmitriev, E. Pomjakushina, K. Conder, M. Stingaciu, V. Pomjakushin, and A. Podlesnyak, Phys. Rev. B 78, 024105 (2008).

  19. P. Miao, X. Lin, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Ueno, N. Inami, K. Ono, Y. Wang, and T. Kamiyama, Phys. Rev. B 95, 125123 (2017).

  20. L. S. Lobanovskii, I. O. Troyanchuk, H. Szymczak, and O. Prokhnenko, J. Exp. Theor. Phys. 103, 740 (2006).

    Article  ADS  Google Scholar 

  21. S. Vlakhov, N. Kozlova, L. S. Lobanovskii, R. Wawryk, and K. A. Nenkov, Phys. Rev. B 84, 184440 (2011).

  22. C. Frontera, J. L. García-Muñoz, A. E. Carrillo, C. Ritter, D. M. y Marero, and A. Caneiro, Phys. Rev. B 70, 184428 (2004).

  23. J. C. Burley, J. F. Mitchell, S. Short, D. Miller, and Y. Tang, J. Solid State Chem. 170, 339 (2003).

    Article  ADS  Google Scholar 

  24. E.-L. Rautama, V. Caignaert, Ph. Boullay, A. K. Kundu, V. Pralong, M. Karppinen, C. Ritter, and B. Raveau, Chem. Mater. 21, 102 (2009).

    Article  Google Scholar 

  25. Md. M. Seikh, V. Pralong, O. I. Lebedev, V. Caignaert, and B. Raveau, J. Appl. Phys. 114, 013902 (2013).

  26. E.-L. Rautama, V. Caignaert, P. Boullay, A. K. Kundu, V. Pralong, M. Karppinen, and B. Raveau, Chem. Mater. 21, 102 (2009).

    Article  Google Scholar 

  27. S. Kolesnik, B. Dabrowski, O. Chmaissem, S. Avci, J. P. Hodges, M. Avdeev, and K. Swierczek, Phys. Rev. B 86, 064434 (2012).

  28. N. I. Solin, S. V. Naumov, and S. V. Telegin, JETP Lett. 107, 203 (2018).

    Article  ADS  Google Scholar 

  29. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1971), Chap. 9.

  30. C. Zener, Phys. Rev. 81, 440 (1951).

    Article  ADS  Google Scholar 

  31. J. Goodenough, Magnetism and the Chemical Bond (Wiley Intersci., New York, 1963).

    Google Scholar 

  32. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Wu, J. Phys.: Condens. Matter 15, 503 (2003).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Telegin for fruitful discussions and to A.V. Korolev for his assistance with the magnetic measurements.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. AAAA-A18-118020290104-2, project Spin) and partially by the Russian Foundation for Basic Research (project no. 20-02-00461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solin, N.I., Naumov, S.V. Effect of the Oxygen Content on the Metal‒Insulator Transition and on the Spin State of Co3+ Ions in the Layered NdBaCo2O5 + δ Cobaltite (0.37 ≤ δ ≤ 0.65). Jetp Lett. 115, 531–538 (2022). https://doi.org/10.1134/S0021364022100472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022100472

Navigation