Skip to main content
Log in

Dissociation of Exciton States in Warm Dense Hydrogen

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The transition from the molecular state to the atomic state in warm dense hydrogen fluid has been actively studied in the past few decades. The use of various experimental techniques has not yet led to reliable results consistent with each other. Despite numerous attempts, theoretical methods have not yet explained existing discrepancies in the experimental data and the microscopic mechanism of the transition of hydrogen fluid to a conducting state. In [I.D. Fedorov, N.D. Orekhov, and V.V. Stegailov, Phys. Rev. B 101, 100101 (R) (2020)], the importance of taking into account nonequilibrium nonadiabatic processes in the analysis of the mechanisms of such transition was demonstrated. In this work, the characteristics of exciton states formed as a result of spontaneous vibronic excitations are calculated. It is shown that the dissociation of such excitons at high temperatures can explain the experimentally observed features of the transition under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012).

    Article  ADS  Google Scholar 

  2. A. N. Utyuzh and A. V. Mikheyenkov, Phys. Usp. 60, 886 (2017).

    Article  ADS  Google Scholar 

  3. R. Helled, G. Mazzola, and R. Redmer, Nat. Rev. Phys. 2, 562 (2020).

    Article  Google Scholar 

  4. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  5. V. E. Fortov, R. I. Ilkaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev, I. L. Iosilevskiy, V. V. Khrustalev, A. L. Mikhailov, M. A. Mochalov, V. Ya. Ternovoi, and M. V. Zhernokletov, Phys. Rev. Lett. 99, 185001 (2007).

    Article  ADS  Google Scholar 

  6. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, Science (Washington, DC, U. S.) 348 (6242), 1455 (2015).

    Article  ADS  Google Scholar 

  7. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, A. O. Blikov, V. A. Ogorodnikov, V. K. Gryaznov, and I. L. Iosilevskii, J. Exp. Theor. Phys. 124, 505 (2017).

    Article  ADS  Google Scholar 

  8. P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson, N. B. Meezan, S. Le Pape, G. W. Collins, R. Jeanloz, and R. J. Hemley, Science (Washington, DC, U. S.) 361 (6403), 677 (2018).

    Article  ADS  Google Scholar 

  9. P. Loubeyre, P. M. Celliers, D. G. Hicks, et al., High Press. Res. 24, 25 (2004).

    Article  ADS  Google Scholar 

  10. V. Dzyabura, M. Zaghoo, and I. F. Silvera, Proc. Natl. Acad. Sci. U. S. A. 110, 8040 (2013).

    Article  ADS  Google Scholar 

  11. K. Ohta, K. Ichimaru, M. Einaga, S. Kawaguchi, K. Shimizu, T. Matsuoka, N. Hirao, and Y. Ohishi, Sci. Rep. 5, 16560 (2015).

    Article  ADS  Google Scholar 

  12. R. S. McWilliams, D. A. Dalton, M. F. Mahmood, and A. F. Goncharov, Phys. Rev. Lett. 116, 255501 (2016).

    Article  ADS  Google Scholar 

  13. M. Zaghoo, R. J. Husband, and I. F. Silvera, Phys. Rev. B 98, 104102 (2018).

    Article  ADS  Google Scholar 

  14. S. Jiang, N. Holtgrewe, Z. M. Geballe, S. S. Lobanov, M. F. Mahmood, R. S. McWilliams, and A. F. Goncharov, Adv. Sci. 7, 1901668 (2020).

    Article  Google Scholar 

  15. G. E. Norman and A. N. Starostin, High Temp. 6, 394 (1968).

    Google Scholar 

  16. L. M. Biberman and G. E. Norman, High Temp. 7, 822 (1969).

    Google Scholar 

  17. J. L. Lebowitz and E. H. Lieb, Phys. Rev. Lett. 22, 631 (1969).

    Article  ADS  Google Scholar 

  18. G. É. Norman and A. N. Starostin, J. Appl. Spectrosc. 13, 965 (1970).

    Article  ADS  Google Scholar 

  19. G. E. Norman and A. N. Starostin, High Temp. 8, 381 (1970).

    Google Scholar 

  20. W. Ebeling, Phys. Status Solidi B 46, 243 (1971).

    Article  ADS  Google Scholar 

  21. W. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Prticle Systems (Akademie, Berlin, 1986).

    Book  Google Scholar 

  22. D. Saumon and G. Chabrier, Phys. Rev. A 44, 5122 (1991).

    Article  ADS  Google Scholar 

  23. H. Reinholz, R. Redmer, and S. Nagel, Phys. Rev. E 52, 5368 (1995).

    Article  ADS  Google Scholar 

  24. W. Ebeling and G. Norman, J. Stat. Phys. 110, 861 (2003).

    Article  Google Scholar 

  25. G. E. Norman, J. Phys. A: Math. Gen. 39, 4579 (2006).

    Article  ADS  Google Scholar 

  26. A. L. Khomkin and A. S. Shumikhin, Plasma Phys. Rep. 39, 857 (2013).

    Article  ADS  Google Scholar 

  27. A. N. Starostin, V. K. Gryaznov, and A. V. Filippov, JETP Lett. 104, 696 (2016).

    Article  ADS  Google Scholar 

  28. W. Ebeling, V. Fortov, and V. Filinov, Quantum Statistics of Dense Gases and Nonideal Plasmas (Springer, Cham, 2017).

    Book  MATH  Google Scholar 

  29. V. S. Filinov and G. E. Norman, Phys. Lett. A 55, 219 (1975).

    Article  ADS  Google Scholar 

  30. G. E. Norman and I. M. Saitov, Contrib. Plasma Phys. 59, e201800182 (2019).

    Article  ADS  Google Scholar 

  31. H. Y. Geng, Q. Wu, M. Marqués, and G. J. Ackland, Phys. Rev. B 100, 134109 (2019).

    Article  ADS  Google Scholar 

  32. R. Redmer and B. Holst, Metal-to-Nonmetal Transitions (Springer, Berlin, 2010), p. 63.

    Book  MATH  Google Scholar 

  33. S. Scandolo, Proc. Natl. Acad. Sci. U. S. A. 100, 3051 (2003).

    Article  ADS  Google Scholar 

  34. I. Tamblyn and S. A. Bonev, Phys. Rev. Lett. 104, 065702 (2010).

    Article  ADS  Google Scholar 

  35. M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).

    Article  ADS  Google Scholar 

  36. G. Mazzola and S. Sorella, Phys. Rev. Lett. 118, 015703 (2017).

    Article  ADS  Google Scholar 

  37. M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 118, 035501 (2017).

    Article  ADS  Google Scholar 

  38. M. D. Knudson, M. P. Desjarlais, M. Preising, and R. Redmer, Phys. Rev. B 98, 174110 (2018).

    Article  ADS  Google Scholar 

  39. K. T. Delaney, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 97, 235702 (2006).

    Article  ADS  Google Scholar 

  40. N. M. Tubman, E. Liberatore, C. Pierleoni, M. Holzmann, and D. M. Ceperley, Phys. Rev. Lett. 115, 045301 (2015).

    Article  ADS  Google Scholar 

  41. G. Mazzola and S. Sorella, Phys. Rev. Lett. 114, 105701 (2015).

    Article  ADS  Google Scholar 

  42. G. Mazzola, R. Helled, and S. Sorella, Phys. Rev. Lett. 120, 025701 (2018).

    Article  ADS  Google Scholar 

  43. G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, Proc. Natl. Acad. Sci. U. S. A. 116, 9770 (2019).

    Article  ADS  Google Scholar 

  44. V. Gorelov, D. M. Ceperley, M. Holzmann, and C. Pierleoni, Phys. Rev. B 102, 195133 (2020).

    Article  ADS  Google Scholar 

  45. Ch. Tian, F. Liu, H. Yuan, H. Chen, and Y. Gan, J. Phys.: Condens. Matter 33, 015401 (2020).

    ADS  Google Scholar 

  46. K. Ramakrishna, T. Dornheim, and J. Vorberger, Phys. Rev. B 101, 195129 (2020).

    Article  ADS  Google Scholar 

  47. M. Ruggeri, M. Holzmann, D. M. Ceperley, and C. Pierleoni, Phys. Rev. B 102, 144108 (2020).

    Article  ADS  Google Scholar 

  48. S. van de Bund, H. Wiebe, and G. J. Ackland, arXiv: 2009.05491 (2020).

  49. V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Phys. Rev. Lett. 120, 076401 (2018).

    Article  ADS  Google Scholar 

  50. N. D. Mermin, Phys. Rev. A 137, 1441 (1965).

    Article  ADS  Google Scholar 

  51. V. V. Stegailov and P. A. Zhilyaev, Mol. Phys. 114, 509 (2016).

    ADS  Google Scholar 

  52. I. D. Fedorov, N. D. Orekhov, and V. V. Stegailov, Phys. Rev. B 101, 100101 (2020).

    Article  ADS  Google Scholar 

  53. N. C. Holmes, M. Ross, and W. J. Nellis, Phys. Rev. B 52, 15835 (1995).

    Article  ADS  Google Scholar 

  54. M. Houtput, J. Tempere, and I. F. Silvera, Phys. Rev. B 100, 134106 (2019).

    Article  ADS  Google Scholar 

  55. I. Frank, J. Hutter, D. Marx, and M. Parrinello, J. Chem. Phys. 108, 4060 (1998).

    Article  ADS  Google Scholar 

  56. N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88, 166402 (2002).

    Article  ADS  Google Scholar 

  57. Ch. Schwermann and N. L. Doltsinis, Phys. Chem. Chem. Phys. 22, 10526 (2020).

    Article  Google Scholar 

  58. B. Jakob, P.-G. Reinhard, C. Toepffer, and G. Zwicknagel, J. Phys. A 42, 214055 (2009).

    Article  ADS  Google Scholar 

  59. J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007).

    Article  ADS  Google Scholar 

  60. Y. S. Lavrinenko, I. V. Morozov, and I. A. Valuev, Contrib. Plasma Phys. 59, e201800179 (2019).

    Article  ADS  Google Scholar 

  61. P. L. Silvestrelli, Phys. Rev. B 59, 9703 (1999).

    Article  ADS  Google Scholar 

  62. W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).

    Article  ADS  Google Scholar 

  63. CPMD, version 3.17. http://www.cpmd.org.

  64. A. V. Lankin and G. E. Norman, J. Phys. A 42, 214032 (2009).

    Article  ADS  Google Scholar 

  65. Ch. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).

    Article  Google Scholar 

  66. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).

    Article  ADS  Google Scholar 

  67. R. P. Dias and I. F. Silvera, Science (Washington, DC, U. S.) 355 (6326), 715 (2017).

    Article  ADS  Google Scholar 

  68. N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105, 664 (2017).

    Article  ADS  Google Scholar 

  69. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 105, 430 (2017).

    Article  ADS  Google Scholar 

  70. I. M. Saitov, JETP Lett. 110, 206 (2019).

    Article  ADS  Google Scholar 

  71. G. E. Norman and I. M. Saitov, JETP Lett. 111, 162 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. G.E. Norman for his interest in this study and to Prof. N. Doltsinis for his advice concerning the usage of Wannier orbitals in the analysis of the electron structure. The study was performed using the resources of the Supercomputer Center, Joint Institute for High Temperatures, Russian Academy of Sciences.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-785 dated on September 23, 2020 with the Joint Institute for High Temperatures, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Stegailov.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, I.D., Stegailov, V.V. Dissociation of Exciton States in Warm Dense Hydrogen. Jetp Lett. 113, 396–401 (2021). https://doi.org/10.1134/S0021364021060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021060047

Navigation