Skip to main content
Log in

Study of the Parameters of Laser-Induced Shock Waves for Laser Shock Peening of Silicon

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The ranges of energies of femtosecond laser pulses and distances from the focusing point of intense (up to 1013 W/cm2) femtosecond laser radiation to a silicon sample in which phase transitions can be initiated have been determined using the time-resolved shadow photography technique. It has been found that the tight focusing (NA = 0.5) of femtosecond near infrared laser radiation provides a pressure of 15 GPa, which corresponds to a pressure of (40 ± 6) GPa in the case of laser shock peening of silicon and exceeds the threshold value necessary for the initiation of a family of phase transitions (11, 14, and 33 GPa). The pressure on the front of the shock wave propagating in the medium decreases rapidly (in 2.5 ns) below this threshold value, which significantly restricts the possible application regimes of laser shock peening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jeanloz, P. M. Celliers, G. W. Collins, G. W. Collins, J. H. Eggert, K. Lee, R. S. McWilliams, S. Brygoo, and P. Loubeyre, Proc. Natl. Acad. Sci. U. S. A. 104, 9172 (2007).

    Article  ADS  Google Scholar 

  2. A. W. Warren, Y. B. Guo, and S. C. Chen, Int. J. Fatigue 30, 188 (2008).

    Article  Google Scholar 

  3. P. Shukla, R. Crookes, and H. Wu, Mater. Des. 167, 107626 (2019).

    Article  Google Scholar 

  4. B. P. Fairand, A. H. Clauer, R. G. Jung, and B. A. Wilcox, Appl. Phys. Lett. 25, 431 (1974).

    Article  ADS  Google Scholar 

  5. U. Trdan, M. Scarba, and G. Grum, Mater. Charact. 97, 57 (2014).

    Article  Google Scholar 

  6. R. Sundar, P. Ganesh, R. K. Gupta, G. Ragvendra, B. K. Pant., Vivekanand Kain, K. Ranganathan, R. Kaul, and K. S. Bindra, Lasers Manuf. Mater. Proces. 6, 424 (2019).

    Article  ADS  Google Scholar 

  7. E. I. Mareev, E. A. Migal’, and F. V. Potemkin, JETP Lett. 107, 402 (2018).

    Article  ADS  Google Scholar 

  8. S. Petronic, T. Sibalija, M. Burzic, S. Polic, K. Colic, and M. Dubravka, Metals 6, 1 (2016).

    Article  Google Scholar 

  9. H. Wang, F. Pohl, K. Yan, P. Decker, E. L. Gurevich, and A. Ostendorf, Appl. Surf. Sci. 471, 869 (2019).

    Article  ADS  Google Scholar 

  10. S. M. Jeong and T. Kitamura, J. Appl. Phys., Part 1 46, 5924 (2007).

    Article  Google Scholar 

  11. M. Budnitzki and M. Kuna, J. Mech. Phys. Solids 95, 64 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Katzke, U. Bismayer, and P. Toledano, Phys. Rev. B. 73, 1 (2006).

    Article  Google Scholar 

  13. N. A. Inogamov, V. V. Zhakhovskii, V. A. Khokhlov, and V. V. Shepelev, JETP Lett. 93, 226 (2011).

    Article  ADS  Google Scholar 

  14. E. I. Mareev, B. V. Rumiantsev, and E. A. Migal, Meas. Sci. Technol. 31, 085204 (2020).

    Article  ADS  Google Scholar 

  15. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum. Electron. 21, 155 (1997).

    Article  ADS  Google Scholar 

  16. F. V. Potemkin and E. I. Mareev, Uch. Zap. Fiz. F-ta MGU, No. 4, 1 (2013).

  17. W. Lauterborn and A. Vogel, Bubble Dynamics and Shock Waves (Springer, Berlin, Heidelberg, 2013), p. 67.

    Book  Google Scholar 

  18. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, Appl. Phys. B 68, 271 (1999).

    Article  ADS  Google Scholar 

  19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  20. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  ADS  Google Scholar 

  21. P. Erhart and K. Albe, Phys. Rev. B 71, 1 (2005).

    Article  Google Scholar 

  22. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, Laser Phys. Lett. 11, 106001 (2014).

    Article  ADS  Google Scholar 

  23. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, New J. Phys. 17, 053010 (2015).

    Article  ADS  Google Scholar 

  24. L. D. Sadwin, M. M. Swisdak, Y. Gitterman, and O. Lotan, in Proceedings of the 30th International Symposium on Shock Waves (2017), Vol. 2, p. 1307.

  25. H. Hosseini, S. Moosavi-Nejad, H. Akiyama, and V. Menezes, Appl. Phys. Lett. 104, 103701 (2014).

    Article  ADS  Google Scholar 

  26. M. Prasad, Lead. Edge 20, 172 (2001).

    Article  Google Scholar 

  27. F. Sabri, M. E. Sebelic, R. Meacham, J. D. Boughter, M. J. Challis, and N. Leventis, PLoS One 8, e66348 (2013).

    Article  ADS  Google Scholar 

  28. E. I. Mareev, K. V. Lvov, B. V. Rumiantsev, E. A. Migal, I. D. Novikov, S. Yu. Stremoukhov, and F. V. Potemkin, Laser Phys. Lett. 17, 015402 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to A.S. Bychkov and A.A. Karabutov for consultation on the propagation of shock waves through the interface between two media.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-02-40018 and 19-29-12037, determination of the conditions for initiating phase transitions in silicon) and by the Russian Science Foundation (project no. 17-72-20130, determination of the energy of the shock wave). B.V. Rumiantsev acknowledges the support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Mareev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 11, pp. 780–786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareev, E.I., Rumiantsev, B.V. & Potemkin, F.V. Study of the Parameters of Laser-Induced Shock Waves for Laser Shock Peening of Silicon. Jetp Lett. 112, 739–744 (2020). https://doi.org/10.1134/S0021364020230095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020230095

Navigation