Skip to main content
Log in

Spectra of Two-Dimensional “Proximity” Plasmons Measured by the Standing-Wave Method

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Plasma excitations in a two-dimensional electron system partially screened by a metal strip gate are investigated using the optical detection of resonance microwave absorption. The optimal geometric parameters of the structure for the observation of standing waves corresponding to “proximity” plasmons along the strip are found. Four standing modes of proximity plasma waves are detected. The spectrum of proximity plasma excitations is determined by identifying the wave vectors corresponding to each of the modes. The measured spectrum coincides with a high accuracy with the theoretical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Stern, Phys. Rev. Lett. 18, 546 (1967).

    Article  ADS  Google Scholar 

  2. C. C. Grimes and G. Adams, Phys. Rev. Lett. 36, 145 (1976).

    Article  ADS  Google Scholar 

  3. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).

    Article  ADS  Google Scholar 

  4. S. J. Allen, H. L. Störmer, and J. C. M. Hwang, Phys. Rev. B 28, 4875 (1983).

    Article  ADS  Google Scholar 

  5. D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams, Phys. Rev. Lett. 54, 1710 (1985).

    Article  ADS  Google Scholar 

  6. A. L. Fetter, Phys. Rev. B 33, 5221 (1986).

    Article  ADS  Google Scholar 

  7. A. V. Chaplik, JETP Lett. 91, 188 (2010).

    Article  ADS  Google Scholar 

  8. A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).

    ADS  Google Scholar 

  9. P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 76, 745 (2000).

    Article  ADS  Google Scholar 

  10. V. M. Muravev, C. Jiang, I. V. Kukushkin, J. H. Smet, V. Umansky, and K. von Klitzing, Phys. Rev. B 75, 193307 (2007).

    Article  ADS  Google Scholar 

  11. D. A. Iranzo, S. Nanot, E. J. C. Dias, I. Epstein, Ch. Peng, D. K. Efetov, M. B. Lundeberg, R. Parret, J. Osmond, J.-Y. Hong, J. Kong, D. R. Englund, N. M. R. Peres, and F. H. L. Koppens, Science (Washington, DC, U. S.) 360, 291 (2018).

    Article  Google Scholar 

  12. S. I. Gubarev, A. A. Dremin, V. E. Kozlov, V. M. Murav’ev, and I. V. Kukushkin, JETP Lett. 90, 539 (2009).

    Article  ADS  Google Scholar 

  13. S. I. Gubarev, V. M. Murav’ev, I. V. Andreev, V. N. Belyanin, and I. V. Kukushkin, JETP Lett. 102, 461 (2015).

    Article  ADS  Google Scholar 

  14. V. V. Popov, O. V. Polishchuk, and S. A. Nikitov, JETP Lett. 95, 85 (2012).

    Article  ADS  Google Scholar 

  15. P. A. Gusikhin, V. M. Murav’ev, and I. V. Kukushkin, JETP Lett. 100, 648 (2014).

    Article  ADS  Google Scholar 

  16. V. M. Muravev, P. A. Gusikhin, I. V. Andreev, and I. V. Kukushkin, Phys. Rev. Lett. 114, 106805 (2015).

    Article  ADS  Google Scholar 

  17. V. M. Muravev, P. A. Gusikhin, A. M. Zarezin, I. V. Andreev, S. I. Gubarev, and I. V. Kukushkin, Phys. Rev. B 99, 241406(R) (2019).

    Article  ADS  Google Scholar 

  18. V. M. Muravev, A. M. Zarezin, P. A. Gusikhin, A. V. Shupletsov, and I. V. Kukushkin, Phys. Rev. B 100, 205405 (2019).

    Article  ADS  Google Scholar 

  19. A. A. Zabolotnykh and V. A. Volkov, Phys. Rev. B 99, 165304 (2019).

    Article  ADS  Google Scholar 

  20. A. A. Zabolotnykh and V. A. Volkov, Semiconductors 53, 1870 (2019).

    Article  ADS  Google Scholar 

  21. B. M. Ashkinadze, E. Linder, and V. Umansky, Phys. Rev. B 62, 10310 (2000).

    Article  ADS  Google Scholar 

  22. V. M. Muravev, I. V. Andreev, S. I. Gubarev, V. N. Belyanin, and I. V. Kukushkin, Phys. Rev. B 93, 041110(R) (2016).

  23. V. M. Muravev, I. V. Andreev, V. N. Belyanin, S. I. Gubarev, and I. V. Kukushkin, Phys. Rev. B 96, 045421 (2017).

    Article  ADS  Google Scholar 

  24. I. V. Kukushkin, D. V. Kulakovski, S. A. Mikhailov, J. H. Smet, and K. von Klitzing, JETP Lett. 77, 497 (2003).

    Article  ADS  Google Scholar 

  25. I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, D. V. Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 90, 156801 (2003).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-72-10072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zarezin.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 5, pp. 316–320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarezin, A.M., Gusikhin, P.A., Muravev, V.M. et al. Spectra of Two-Dimensional “Proximity” Plasmons Measured by the Standing-Wave Method. Jetp Lett. 111, 282–285 (2020). https://doi.org/10.1134/S0021364020050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020050112

Navigation