Skip to main content
Log in

Plasmon Excitations in Partially Screened Two-Dimensional Electron Systems (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The latest achievements in the study of the physical properties of plasmon excitations in partially screened two-dimensional electron systems based on AlGaAs/GaAs heterostructures have been reviewed. It has been revealed that a proximity plasmon, i.e., a specific type of two-dimensional plasma waves, is excited in such systems. It has been established experimentally that these plasma waves have a number of new physical properties. First, the dispersion relation of partially screened plasmons combines features of both screened and unscreened two-dimensional plasmons. Second, an edge branch is absent in the magnetic dispersion relation of the revealed proximity mode. Finally, a “charged” relativistic plasma mode with a number of unique properties is excited in the system if the gate is connected to the two-dimensional system through an external circuit. The reported new results expand the horizon of possible applications of plasmonics in the field of microwave and terahertz electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Stern, Phys. Rev. Lett. 18, 546 (1967).

    Article  ADS  Google Scholar 

  2. C. C. Grimes and G. Adams, Phys. Rev. Lett. 36, 145 (1976).

    Article  ADS  Google Scholar 

  3. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).

    Article  ADS  Google Scholar 

  4. T. N. Theis, J. P. Kotthaus, and P. J. Stiles, Solid State Commun. 24, 273 (1977).

    Article  ADS  Google Scholar 

  5. S. J. Allen, H. L. Störmer, and J. C. M. Hwang, Phys. Rev. B 28, 4875 (1983).

    Article  ADS  Google Scholar 

  6. D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams, Phys. Rev. Lett. 54, 1710 (1985).

    Article  ADS  Google Scholar 

  7. V. M. Muravev, A. A. Fortunatov, I. V. Kukushkin, J. H. Smet, W. Dietsche, and K. von Klitzing, Phys. Rev. Lett. 101, 216801 (2008).

  8. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Nat. Nanotechnol. 6, 630 (2011).

    Article  ADS  Google Scholar 

  9. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature (London, U.K.) 487, 77 (2012).

    Article  ADS  Google Scholar 

  10. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature (London, U.K.) 487, 82 (2012).

    Article  ADS  Google Scholar 

  11. I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, D. V. Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 90, 156801 (2003).

  12. A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).

    ADS  Google Scholar 

  13. A. Satou, I. Khmyrova, V. Ryzhii, and M. S. Shur, Semicond. Sci. Technol. 18, 460 (2003).

    Article  ADS  Google Scholar 

  14. V. Ryzhii, A. Satou, W. Knap, and M. S. Shur, J. Appl. Phys. 99, 084507 (2006).

  15. G. C. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen, J. L. Reno, and E. A. Shaner, Phys. Rev. Lett. 109, 126803 (2012).

  16. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, Phys. Rev. Lett. 108, 127401 (2012).

  17. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, Nat. Photon. 7, 925 (2013).

    Article  ADS  Google Scholar 

  18. A. S. Petrov, D. Svintsov, V. Ryzhii, and M. S. Shur, Phys. Rev. B 95, 045405 (2017).

  19. D. A. Iranzo, S. Nanot, E. J. C. Dias, I. Epstein, C. Peng, D. K. Efetov, M. B. Lundeberg, R. Parret, J. Osmond, J.-Y. Hong, J. Kong, D. R. Englund, N. M. R. Peres, and F. H. L. Koppens, Science (Washington, DC, U. S.) 360, 291 (2018).

    Article  Google Scholar 

  20. A. A. Zabolotnykh and V. A. Volkov, Phys. Rev. B 99, 165304 (2019).

  21. V. M. Muravev, P. A. Gusikhin, A. M. Zarezin, I. V. Andreev, S. I. Gubarev, and I. V. Kukushkin, Phys. Rev. B 99, 241406(R) (2019).

  22. W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lü, M. S. Shur, C. A. Saylor, and L. C. Brunel, Appl. Phys. Lett. 80, 3433 (2002).

    Article  ADS  Google Scholar 

  23. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys. Lett. 81, 1627 (2002).

    Article  ADS  Google Scholar 

  24. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 87, 193507 (2005).

  25. V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, Appl. Phys. Lett. 99, 243504 (2011).

  26. D. A. Bandurin, D. Svintsov, I. Gayduchenko, et al., Nat. Commun. 9, 5392 (2018).

    Article  ADS  Google Scholar 

  27. I. V. Kukushkin, J. H. Smet, K. von Klitzing, and W. Wegscheider, Nature (London, U.K.) 415, 409 (2002).

    Article  ADS  Google Scholar 

  28. V. M. Muravev, I. V. Andreev, S. I. Gubarev, V. N. Belyanin, and I. V. Kukushkin, Phys. Rev. B 93, 041110(R) (2016).

  29. A. M. Zarezin, P. A. Gusikhin, V. M. Muravev, and I. V. Kukushkin, JETP Lett. 111, 282 (2020).

    Article  ADS  Google Scholar 

  30. A. A. Zabolotnykh and V. A. Volkov, Phys. Rev. B 102, 165306 (2020).

  31. Das Sarma and W. Y. Lai, Phys. Rev. B 32, 1401 (1985).

    Article  ADS  Google Scholar 

  32. I. L. Aleiner, D. X. Yue, and L. I. Glazman, Phys. Rev. B 51, 13467 (1995).

    Article  ADS  Google Scholar 

  33. I. V. Kukushkin, J. H. Smet, V. A. Kovalskii, S. I. Gubarev, K. von Klitzing, and W. Wegscheider, Phys. Rev. B 72, 161317 (2005).

  34. P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 76, 745 (2000).

    Article  ADS  Google Scholar 

  35. D. A. Iranzo, S. Nanot, E. J. C. Dias, I. Epstein, C. Peng, D. K. Efetov, M. B. Lundeberg, R. Parret, J. Osmond, J.-Y. Hong, J. Kong, D. R. Englund, N. M. R. Peres, and F. H. L. Koppens, Science (Washington, DC, U. S.) 360, 291 (2018).

    Article  Google Scholar 

  36. V. M. Muravev, I. V. Andreev, N. D. Semenov, S. I. Gubarev, and I. V. Kukushkin, Phys. Rev. B 103, 125308 (2021).

  37. V. M. Muravev, A. M. Zarezin, P. A. Gusikhin, A. V. Shupletsov, and I. V. Kukushkin, Phys. Rev. B 100, 205405 (2019).

  38. A. A. Zabolotnykh and V. A. Volkov, Semiconductors 53, 1870 (2019).

    Article  ADS  Google Scholar 

  39. P. A. Gusikhin, V. M. Murav’ev, and I. V. Kukushkin, JETP Lett. 100, 749 (2015).

    Article  ADS  Google Scholar 

  40. V. M. Muravev, P. A. Gusikhin, I. V. Andreev, and I. V. Kukushkin, Phys. Rev. Lett. 114, 106805 (2015).

  41. V. M. Muravev, P. A. Gusikhin, A. M. Zarezin, A. A. Zabolotnykh, V. A. Volkov, and I. V. Kukushkin, Phys. Rev. B 102, 081301(R) (2020).

  42. S. I. Dorozhkin, A. A. Kapustin, I. A. Dmitriev, V. Umansky, K. von Klitzing, and J. H. Smet, Phys. Rev. B 96, 155306 (2017).

  43. I. V. Andreev, V. M. Muravev, V. N. Belyanin, and I. V. Kukushkin, Phys. Rev. B 96, 161405 (R) (2017).

  44. G. R. Aizin and G. C. Dyer, Phys. Rev. B 86, 235316 (2012).

  45. V. M. Muravev, N. D. Semenov, I. V. Andreev, P. A. Gusikhin, and I. V. Kukushkin, Appl. Phys. Lett. 117, 151103 (2020).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-72-30003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zarezin.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarezin, A.M., Gusikhin, P.A., Andreev, I.V. et al. Plasmon Excitations in Partially Screened Two-Dimensional Electron Systems (Brief Review). Jetp Lett. 113, 713–722 (2021). https://doi.org/10.1134/S0021364021110096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021110096

Navigation