Skip to main content
Log in

Semimetal States of Crystalline Molecular Hydrogen at High Pressures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Semimetal states of crystalline molecular hydrogen have been obtained at a temperature of 100 K in the pressure range from 410 to 626 GPa. To analyze the nature of conductivity, the band structure is calculated in the framework of the density functional theory using the Heyd-Scuseria-Ernzerhof hybrid exchange-correlation functional. One of the semimetal states occurs in a monoclinic structure with C2/c symmetry under compression to a pressure of 410 GPa, at which the gap between the valence and conduction bands is closed. Moreover, the valence band is partially unfilled, and the conduction band is partially filled, which is a characteristic feature of a semimetal. At a pressure of 302 GPa, crystalline molecular hydrogen with the C2/c structure remains an insulator. The pressure dependence of the electrical conductivity in the range of 300–500 GPa is determined. The second semimetal state is observed for a rhombic structure with Cmca-4 symmetry at a pressure of 626 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  2. C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).

    Article  Google Scholar 

  3. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).

    Article  ADS  Google Scholar 

  4. N. N. Degtyarenko and E. A. Mazur, JETP Lett. 104, 319 (2016).

    Article  ADS  Google Scholar 

  5. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104, 460 (2016).

    Article  ADS  Google Scholar 

  6. N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105, 664 (2017).

    Article  ADS  Google Scholar 

  7. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 105, 430 (2017).

    Article  ADS  Google Scholar 

  8. S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, Phys. Rev. Lett. 112, 165501 (2014).

    Article  ADS  Google Scholar 

  9. J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, Phys. Rev. Lett. 114, 105305 (2015).

    Article  ADS  Google Scholar 

  10. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  11. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).

    ADS  Google Scholar 

  12. Yu. Kagan, E. G. Brovman, and A. Kholas, Sov. Phys. JETP 46, 511 (1977).

    ADS  Google Scholar 

  13. R. Dias and I. F. Silvera, Science (Washington, DC, U.S.) 355, 715 (2017).

    Article  ADS  Google Scholar 

  14. P. Loubeyre, F. Occellil, and P. Dumas, arXiv: 1906.05634 (2019).

  15. K. A. Johnson and N. W. Ashcroft, Nature (London, U.K.) 403, 632 (2000).

    Article  ADS  Google Scholar 

  16. A. F. Goncharov, J. S. Tse, H. Wang, J. Yang, V. V. Struzhkin, R. T. Howie, and E. Gregoryanz, Phys. Rev. B 87, 024101 (2013).

    Article  ADS  Google Scholar 

  17. S. Azadi, W. M. C. Foulkes, and T. D. Kühne, New J. Phys. 15, 113005 (2013).

    Article  ADS  Google Scholar 

  18. S. Azadi, N. D. Drummond, and W. M. C. Foulkes, Phys. Rev. B 95, 035142 (2017).

    Article  ADS  Google Scholar 

  19. S. Azadi, R. Singh, and T. D. Kuehne, J. Comput. Chem. 39, 262 (2018).

    Article  Google Scholar 

  20. G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, J. Chem. Phys. 148, 102314 (2018).

    Article  ADS  Google Scholar 

  21. G. E. Norman and I. M. Saitov, Dokl. Phys. 64, 145 (2019).

    Article  ADS  Google Scholar 

  22. I. M. Saitov, JETP Lett. 110, 206 (2019).

    Article  ADS  Google Scholar 

  23. E. A. Dorofeev and L. A. Fal’kovskii, Sov. Phys. JETP 60, 1273 (1984).

    Google Scholar 

  24. P. Brown, K. Semeniuk, A. Vasiljkovic, and F. M. Grosche, Phys. Proc. 75, 29 (2015).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  27. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  28. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  29. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  31. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  Google Scholar 

  32. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1976).

    MATH  Google Scholar 

  35. N. Ashcroft and N. Mermin, Solid State Physics (Brooks Cole, Pacific Grove, 1976), Vol. 1.

    MATH  Google Scholar 

  36. B. A. Volkov and L. A. Fal’kovskii, Sov. Phys. JETP 58, 1239 (1983).

    Google Scholar 

  37. L. A. Fal’kovskii, Sov. Phys. Usp. 29, 577 (1986).

    Article  ADS  Google Scholar 

  38. L. A. Fal’kovskii, Sov. Phys. Solid State 28, 146 (1986).

    Google Scholar 

  39. X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  40. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  41. C. Shekhar, A. K. Nayak, Y. Sun, et al., Nat. Phys. 11, 645 (2015).

    Article  Google Scholar 

  42. M. I. Eremets, A. P. Drozdov, P. P. Kong, and H. Wang, Nat. Phys. (2019). https://doi.org/10.1038/s41567-019-0646-x

  43. C.-S. Zha, Z. Liu, and R. J. Hemley, Phys. Rev. Lett. 108, 146402 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to V.V. Brazhkin for useful advice. The calculations were performed on the clusters of the Joint Supercomputer Center, Russian Academy of Sciences, and on the K-100 cluster, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Russian Science Foundation, project no. 18-19-00734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Saitov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 175–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, G.E., Saitov, I.M. Semimetal States of Crystalline Molecular Hydrogen at High Pressures. Jetp Lett. 111, 162–166 (2020). https://doi.org/10.1134/S0021364020030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030091

Navigation