Skip to main content
Log in

Niobium Monoxide Superstructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The cubic and orthorhombic models of Nb3O3 and Nb6O6 superstructures of nonstoichiometric niobium monoxide Nb0.75O0.75 with double defects have been proposed for the first time on the basis of the symmetry analysis and concepts of the channel of a disorder—order transition and the distribution function. The channel of the disorder—order transition associated with the formation of considered model superstructures includes three superstructure vectors, which are the arms k(1)10, k(2)10 and k(3)10 of the k10 Lifshitz star. The distribution functions of O and Nb atoms over the sites of the Nb3O3 and Nb6O6 superstructures have been calculated. It has been shown that a decrease in the temperature can be accompanied by the formation of the Nb3O3 cubic, Nb3O3 orthorhombic, and Nb6O6 orthorhombic phases through successive disorder—order and order—order transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Andersson and A. Magnelli, Acta Chem. Scand. 11, 1065 (1957).

    Article  Google Scholar 

  2. A. L. Bowman, T. C. Wallace, J. L. Yarnell, and R. G. Wenzel, Acta Crystallogr. 21, 843 (1966).

    Article  Google Scholar 

  3. A. A. Rempel’ and A. I. Gusev, Non-Stoichiometry in Solid State (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  4. J. K. Hulm, C. K. Jones, R. A. Hein, and J. W. Gibson, J. Low Temp. Phys. 7, 291 (1972).

    Article  ADS  Google Scholar 

  5. E. Z. Kurmaev, A. Moewes, O. G. Bureev, I. A. Nekrasov, V. M. Cherkashenko, M. A. Korotin, and D. L. Ederer, J. Alloys Compd. 347, 213 (2002).

    Article  Google Scholar 

  6. Y. Qiu, D. Smyth, and J. Kimmel, Act. Passive Electron. Comp. 25, 201 (2002).

    Article  Google Scholar 

  7. C. Nico, M. R. N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M. P. F. Graca, M. A. Valente, F. M. Costa, and T. Monteiro, J. Phys. Chem. C 115, 4879 (2011).

    Article  Google Scholar 

  8. W. W. Schulz and R. M. Wentzcovitch, Phys. Rev. B 48, 16986 (1993).

    Article  ADS  Google Scholar 

  9. A. K. Efimenko, N. Hollmann, K. Hoefer, et al., Phys. Rev. B 96, 195112 (2017).

    Article  ADS  Google Scholar 

  10. C. Nico, T. Monteiro, and M. P. F. ’Graca, Prog. Mater. Sci. 80, 1 (2016).

    Article  Google Scholar 

  11. D. Bach, H. Stormer, R. Schneider, D. Gerthsen, and J. Verbeeck, Microsc. Microanal. 12, 416 (2006).

    Article  ADS  Google Scholar 

  12. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, P. R. Subramanian, H. Okamoto, and L. Kasprzak, 2nd ed. (ASM Int. Publ., Materials Park, OH, 1990), Vol. 3, p. 2749.

    Google Scholar 

  13. K. T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, J. Chem. Eng. Data 55, 4854 (2010).

    Article  Google Scholar 

  14. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, JETP Lett. 71, 460 (2000).

    Article  ADS  Google Scholar 

  15. M. G. Kostenko and A. A. Rempel, JETP Lett. 106, 157 (2017).

    Article  ADS  Google Scholar 

  16. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  17. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04582-4

    Book  Google Scholar 

  18. A. I. Gusev, Nonstoichiometry and Chaos, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  19. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  20. A. A. Rempel, S. I. Sadovnikov, G. Klinser and W. Sprengel, JETP Lett. 107, 4 (2018).

    Article  ADS  Google Scholar 

  21. S. I. Sadovnikov and A. I. Gusev, JETP Lett. 109, 584 (2019).

    Article  ADS  Google Scholar 

  22. A. I. Gusev and S. I. Sadovnikov, J. Exp. Theor. Phys. 129, 1045 (2019).

    Article  ADS  Google Scholar 

  23. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 109, 589 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was performed at the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, and was supported by the Russian Science Foundation (project no. 19-73-20012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gusev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 190–196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.I. Niobium Monoxide Superstructures. Jetp Lett. 111, 176–182 (2020). https://doi.org/10.1134/S0021364020030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030066

Navigation