Skip to main content
Log in

Ordering Sequence in Strongly Nonstoichiometric Niobium Carbide with the Formation of Nb6C5-Type Superstructures

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Possible Nb6C5-type superstructures of nonstoichiometric niobium carbide NbC0.83 are found by the evolutionary crystal structure prediction algorithm. A symmetry analysis is carried out of Nb6C5-type model superstructures, the formation of which is possible in nonstoichiometric cubic niobium carbide with B1 structure. Channels of order–disorder transition NbCy → Nb6C5 are found. It is shown that niobium and carbon atoms, which form the immediate environment of vacant sites in Nb6C5 superstructures, experience the maximum displacement and are shifted away from structural vacancies (the vacant sites of the carbon sublattice). As temperature decreases, two physically admissible sequences of transformations associated with the formation of Nb6C5 superstructures are possible in NbC0.83 carbide. The transformation sequences obtained are in agreement with the calculation of the ground states of the superstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides (Springer Series in Materials Science, Vol. 47) (Springer, Berlin, Heidelberg, New York, London, 2001). https://doi.org/10.1007/978-3-662-04582-4

    Book  Google Scholar 

  2. A. I. Gusev, Nonstoichiometry and Disorder, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  3. A. A. Rempel’ and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

  4. J. Billingham, P. S. Bell, and M. H. Lewis, Acta Crystallogr., A 28, 602 (1972).

    Article  ADS  Google Scholar 

  5. A. A. Rempel’ and A. I. Gusev, Ordering in Non-stoichiometric Niobium Monocarbide (Ural. Nauch. Tsentr AN SSSR, Sverdlovsk, 1983) [in Russian].

  6. A. A. Rempel’, A. I. Gusev, V. G. Zubkov, and G. P. Shveikin, Sov. Phys. Dokl. 29, 257 (1984).

    ADS  Google Scholar 

  7. A. I. Gusev and A. A. Rempel’, Sov. Phys. Solid State 26, 2178 (1984).

    Google Scholar 

  8. A. A. Rempel’ and A. I. Gusev, Sov. Phys. Crystallogr. 30, 648 (1985).

  9. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 93, 71 (1986).

    Article  ADS  Google Scholar 

  10. A. I. Gusev and A. A. Rempel, J. Phys. C: Solid State Phys. 20, 5011 (1987).

    Article  ADS  Google Scholar 

  11. J. P. Landesman, A. N. Christensen, C. H. de Novion, C. H. Lorenzelli, and P. Convert, J. Phys. C: Solid State Phys. 18, 809 (1985).

    Article  ADS  Google Scholar 

  12. A. N. Christensen, Acta Chem. Scand. A 39, 803 (1985).

    Article  Google Scholar 

  13. B. V. Khaenko and O. P. Sivak, Sov. Phys. Crystallogr. 35, 653 (1990).

    Google Scholar 

  14. J. D. Venables, D. Kahn, and R. G. Lye, Philos. Mag. 18, 177 (1968).

    Article  ADS  Google Scholar 

  15. A. I. Gusev, J. Exp. Theor. Phys. 109, 417 (2009).

    Article  ADS  Google Scholar 

  16. M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, Mendeleev Commun. 27, 147 (2017).

    Article  Google Scholar 

  17. M. G. Kostenko, S. V. Sharf, and A. A. Rempel, Mendeleev Commun. 27, 251 (2017).

    Article  Google Scholar 

  18. M. G. Kostenko and A. A. Rempel, J. Solid State Chem. 253, 139 (2017).

    Article  ADS  Google Scholar 

  19. M. G. Kostenko and A. A. Rempel, Mendeleev Commun. 28, 36 (2018).

    Article  Google Scholar 

  20. M. G. Kostenko and A. A. Rempel, Bull. Russ. Acad. Sci.: Phys. 82, 595 (2018).

    Article  Google Scholar 

  21. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  22. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  Google Scholar 

  23. A. O. Lyakhov, A. R. Oganov, H. T. Stoke, and Q. Zhu, Comput. Phys. Comm. 184, 1172 (2013).

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  27. O. V. Kovalev, Irreducible and Induced Representations and Co-representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  28. V. Moisy-Maurice, C. H. de Novion, A. N. Christensen, and W. Just, Solid State Commun. 39, 661 (1981).

    Article  ADS  Google Scholar 

  29. T. Priem, Rapport CEA-R-5499 (Commissariat al’Energ. At., Centre d’Etudes Nucl. Saclay, Gif-sur-Yvette, 1989).

  30. B. Beuneu, T. Priem, C. H. de Novion, S. Lefebvre, J. Chevrier, and A. N. Christensen, J. Appl. Crystallogr. 23, 497 (1990).

    Article  Google Scholar 

  31. C. H. de Novion, B. Beuneu, T. Priem, N. Lorenzelli, and A. Finel, in The Physics and Chemistry of Carbides, Nitrides and Borides, Ed. by R. Freer (Kluwer Academic, Netherlands, 1990), p. 329.

    Google Scholar 

  32. A. A. Rempel’ and A. K. Sinel’nichenko, Metallofizika 13, 61 (1991).

  33. G. R. Gruzalski and D. M. Zenner, Phys. Rev. B 34, 3841 (1986).

    Article  ADS  Google Scholar 

  34. A. A. Rempel, M. Forster, and H.-E. Schaefer, J. Phys.: Condens. Matter 5, 261 (1993).

    ADS  Google Scholar 

  35. A. A. Rempel, L. V. Zueva, V. N. Lipatnikov, and H.‑E. Schaefer, Phys. Status Solidi A 169, R9 (1998).

    Article  ADS  Google Scholar 

  36. A. A. Valeeva and M. G. Kostenko, Nanosyst.: Phys. Chem. Math. 8, 816 (2017).

    Google Scholar 

  37. A. A. Valeeva, M. G. Kostenko, S. Z. Nazarova, E. Yu. Gerasimov, and A. A. Rempel, Inorg. Mater. 54, 568 (2018).

    Article  Google Scholar 

  38. D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin, Nature (London, U.K.) 210, 934 (1966).

    Article  ADS  Google Scholar 

  39. D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin, Nature (London, U.K.) 210, 934 (1966).

    Article  ADS  Google Scholar 

  40. E. Hilti, Naturwissensch. 55, 130 (1968).

    Article  ADS  Google Scholar 

  41. M. G. Kostenko and S. V. Sharf, J. Exp. Theor. Phys. 128, 607 (2019).

    Article  ADS  Google Scholar 

  42. A. I. Gusev, A. S. Kurlov, and A. A. Rempel, JETP Lett. 101, 533 (2015).

    Article  ADS  Google Scholar 

  43. A. A. Valeeva, S. Z. Nazarova, and A. A. Rempel, JETP Lett. 101, 258 (2015).

    Article  ADS  Google Scholar 

  44. A. A. Valeeva, K. A. Petrovykh, H. Schroettner, and A. A. Rempel, Inorg. Mater. 51, 1132–1137 (2015).

    Article  Google Scholar 

  45. A. A. Valeeva, S. Z. Nazarova, and A. A. Rempel, Phys. Solid State 58, 771–778 (2016).

    Article  ADS  Google Scholar 

  46. S. I. Sadovnikov, N. S. Kozhevnikova, A. A. Rempel, and A. Magerl, Thin Solid Films 548, 230–234 (2013).

    Article  ADS  Google Scholar 

  47. S. I. Sadovnikov and A. I. Gusev, J. Alloys Comp. 610, 196–202 (2014).

Download references

Funding

This work is financially supported by the Russian Science Foundation (project no. 19-73-20012) through the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Kostenko or A. I. Gusev.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, M.G., Lukoyanov, A.V., Valeeva, A.A. et al. Ordering Sequence in Strongly Nonstoichiometric Niobium Carbide with the Formation of Nb6C5-Type Superstructures. J. Exp. Theor. Phys. 129, 863–876 (2019). https://doi.org/10.1134/S1063776119110050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119110050

Navigation